Tolerance of high and low amounts of PLGA microspheres loaded with mineralocorticoid receptor antagonist in retinal target site

Research Projects
Organizational Units
Journal Issue
Mineralocorticoid receptor (MR)contributes to retinal/choroidal homeostasis. Excess MR activation has been shown to be involved in pathogenesis of central serous chorioretinopathy (CSCR). Systemic administration of MR antagonist (MRA) reduces subretinal fluid and choroidal vasodilation, and improves the visual acuity in CSCR patients. To achieve long term beneficial effects in the eye while avoiding systemic side-effects, we propose the use ofbiodegradable spironolactone-loaded polylactic-co-glycolic acid (PLGA)microspheres (MSs). In this work we have evaluated the ocular tolerance of MSs containing spironolactone in rats’ eyes. As previous step, we have also studied the tolerance of the commercial solution of canrenoate salt, active metabolite of spironolactone. PLGA MSs allowed in vitro sustained release of spironolactone for 30 days. Rat eyes injected with high intravitreous concentration of PLGA MSs (10 mg/mL) unloaded and loaded with spironolactone maintained intact retinal lamination at 1 month. However enhanced glial fibrillary acidic protein immunostaining and activated microglia/macrophages witness retinal stress were observed. ERG also showed impaired photoreceptor function. Intravitreous PLGA MSs concentration of 2 mg/mL unloaded and loaded with spironolactone resulted well tolerated. We observed reduced microglial/macrophage activation in rat retina compared to high concentration of MSs with normal retinal function according to ERG. Spironolactone released from low concentration of MSs was active in the rat retina. Low concentration of spironolactone-loaded PLGA MSs could be a safe therapeutic choice for chorioretinal disorders in which illicit MR activation could be pathogenic.
Unesco subjects
1. Farman, N., et al., The mineralocorticoid receptor as a novel player in skin biology: beyond the renal horizon? Exp Dermatol, 2010. 19(2): p. 100-7. 2. Nguyen Dinh Cat, A. and F. Jaisser, Extrarenal effects of aldosterone. Curr Opin Nephrol Hypertens, 2012. 21(2): p. 147-56. 3. Briet, M. and E.L. Schiffrin, Vascular actions of aldosterone. J Vasc Res, 2013. 50(2): p. 89-99. 4. Feldman, R.D. and R. Gros, Vascular effects of aldosterone: sorting out the receptors and the ligands. Clin Exp Pharmacol Physiol, 2013. 40(12): p. 916-21. 5. McCurley, A. and I.Z. Jaffe, Mineralocorticoid receptors in vascular function and disease. Mol Cell Endocrinol, 2012. 350(2): p. 256-65. 6. Funder, J.W., Mineralocorticoid receptor antagonists: emerging roles in cardiovascular medicine. Integr Blood Press Control, 2013. 6: p. 129-38. 7. Funder, J.W., RALES, EPHESUS and redox. J Steroid Biochem Mol Biol, 2005. 93(2-5): p. 121-5. 8. Pitt, B., et al., Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med, 2003. 348(14): p. 1309-21. 9. Zhao, M., et al., The neuroretina is a novel mineralocorticoid target: aldosterone up-regulates ion and water channels in Muller glial cells. FASEB J, 2010. 24(9): p. 3405-15. 10. Bousquet, E., et al., The aldosterone-mineralocorticoid receptor pathway exerts antiinflammatory effects in endotoxin-induced uveitis. PLoS One, 2012. 7(11): p. e49036. 11. Zhao, M., et al., Mineralocorticoid receptor is involved in rat and human ocular chorioretinopathy. J Clin Invest, 2012. 122(7): p. 2672-9. 12. Mirshahi, M. and M.K. Agarwal, Receptor-mediated adrenocorticoid hormone signaling in ocular tissues. Biochem Pharmacol, 2003. 65(8): p. 1207-14. 13. Wilkinson-Berka, J.L., et al., Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology. Circ Res, 2009. 104(1): p. 124-33. 14. Zhao, M., et al., Differential regulations of AQP4 and Kir4.1 by triamcinolone acetonide and dexamethasone in the healthy and inflamed retina. Invest Ophthalmol Vis Sci, 2011. 52(9): p. 6340-7. 15. Bousquet, E., et al., Mineralocorticoid receptor antagonism in the treatment of chronic central serous chorioretinopathy: a pilot study. Retina, 2013. 33(10): p. 2096-102. 16. Bousquet, E., et al., Spironolactone for Nonresolving Central Serous Chorioretinopathy: A Randomized Controlled Crossover Study. Retina, 2015. 35(12): p. 2505-15. 17. Daruich, A., et al., Central serous chorioretinopathy: Recent findings and new physiopathology hypothesis. Prog Retin Eye Res, 2015. 48: p. 82-118. 18. Daruich, A., et al., Oral Mineralocorticoid-Receptor Antagonists: Real-Life Experience in Clinical Subtypes of Nonresolving Central Serous Chorioretinopathy With Chronic Epitheliopathy. Transl Vis Sci Technol, 2016. 5(2): p. 2. 19. Ghanem, C.I., et al., Induction of rat intestinal P-glycoprotein by spironolactone and its effect on absorption of orally administered digoxin. J Pharmacol Exp Ther, 2006. 318(3): p. 1146-52. 20. Andres-Guerrero, V., et al., Novel biodegradable polyesteramide microspheres for controlled drug delivery in Ophthalmology. J Control Release, 2015. 211: p. 105-17. 21. Herrero Vanrell, R. and M.F. Refojo, [Biodegradable microspheres for intraocular drug administration]. Arch Soc Esp Oftalmol, 2001. 76(4): p. 203-4. 22. Herrero-Vanrell, R. and M.F. Refojo, Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev, 2001. 52(1): p. 5-16. 23. Short, B.G., Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol Pathol, 2008. 36(1): p. 49-62. 24. Rong, X., et al., Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits. Int J Nanomedicine, 2014. 9: p. 3057-68. 25. Kim, S.J., T.J. Doherty, and E.F. Cherney, Intravitreal ketorolac for chronic uveitis and macular edema: a pilot study. Arch Ophthalmol, 2012. 130(4): p. 456-60. 26. Maldonado, R.M., et al., Intravitreal injection of commercially available ketorolac tromethamine in eyes with diabetic macular edema refractory to laser photocoagulation. Curr Eye Res, 2011. 36(8): p. 768-73. 27. Fischer, M.D., et al., Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS One, 2009. 4(10): p. e7507. 28. Latouche, C., et al., Neutrophil gelatinase-associated lipocalin is a novel mineralocorticoid target in the cardiovascular system. Hypertension, 2012. 59(5): p. 966-72. 29. Tarjus, A., et al., Neutrophil Gelatinase-Associated Lipocalin, a Novel Mineralocorticoid Biotarget, Mediates Vascular Profibrotic Effects of Mineralocorticoids. Hypertension, 2015. 66(1): p. 158-66. 30. Jaisser, F. and N. Farman, Emerging Roles of the Mineralocorticoid Receptor in Pathology: Toward New Paradigms in Clinical Pharmacology. Pharmacol Rev, 2016. 68(1): p. 49-75. 31. Gergely, R., et al., Mineralocorticoid Receptor Antagonist Treatment in Bilateral Chronic Central Serous Chorioretinopathy: A Comparative Study of Exudative and Nonexudative Fellow Eyes. Retina, 2016. 32. Pichi, F., et al., Comparison of two mineralcorticosteroids receptor antagonists for the treatment of central serous chorioretinopathy. Int Ophthalmol, 2016. 33. Singh, R.P., et al., Oral eplerenone for the management of chronic central serous chorioretinopathy. Int J Ophthalmol, 2015. 8(2): p. 310-4. 34. Herrero Vanrell, R., et al., Nano and microtechnologies for ophthalmic administration, an overview. Drug Del Sci Tech, 2013. 23(2): p. 75-102. 35. Barcia, E., et al., Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone. Exp Eye Res, 2009. 89(2): p. 238-45. 36. Amrite, A.C., et al., Single periocular injection of celecoxib-PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest Ophthalmol Vis Sci, 2006. 47(3): p. 1149-60. 37. Checa-Casalengua, P., et al., Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release, 2011. 156(1): p. 92-100. 38. Jiang, C., et al., Intravitreal injections of GDNF loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma. Mol Vis, 2007. 13: p. 1783-92. 39. Andrieu-Soler, C., et al., Intravitreous injection of PLGA microspheres encapsulating GDNF promotes the survival of photoreceptors in the rd1/rd1 mouse. Mol Vis, 2005. 11: p. 1002-11. 40. Herrero-Vanrell, R., et al., The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies. Prog Retin Eye Res, 2014. 42: p. 27-43. 41. Saishin, Y., et al., Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest Ophthalmol Vis Sci, 2003. 44(11): p. 4989-93. 42. Yao, J., et al., Robust cell integration from co transplantation of biodegradable MMP2-PLGA microspheres with retinal progenitor cells. Biomaterials, 2011. 32(4): p. 1041-50. 43. London, N.J., A. Chiang, and J.A. Haller, The dexamethasone drug delivery system: indications and evidence. Adv Ther, 2011. 28(5): p. 351-66. 44. Giordano, G.G., et al., Biodegradation and tissue reaction to intravitreous biodegradable poly(D,L-lactic co-glycolic)acid microspheres. Curr Eye Res, 1995. 14(9): p. 761-8. 45. Cardillo, J.A., A.A. Souza-Filho, and A.G. Oliveira, Intravitreal Bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulnes for the treatment of diabetic macular edema. Arch Soc Esp Oftalmol, 2006. 81(12): p. 675-7, 679-81.