A problem on slender nearly cylindrical shells suggested by Torroja’s structures

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this paper we consider peculiar kinds of curved slender nearly cylindrical elastic shells enjoying rigidity properties inherited from the geometry which furnish remarkable properties of strength. In two previous papers were addressed the cases exactly cylindrical and slightly hyperbolic (i:e: the total curvature of the middle surface is zero or slightly negative). In the present work, we take advantage of a new kind of a priori estimates which is independent of the type (either hyperbolic or elliptic) of the middle surface, allowing a generalization of the results to more general surfaces, including the elliptic case (i:e: with curvature slightly positive).
Unesco subjects
Béchet, F., Millet, O., & Sanchez Palencia, E. (2010). Limit behavior of Koiter model for long cylindrical shells and Vlassov model. International Journal of Solids and Structures, 47, 365–373. Caillerie, D., Raoult, A., & Sanchez Palencia, E. (2006). On internal and boundary layers with unbounded energy in thin shell theory. Parabolic characteristic and non-characteristic cases. Asymptotic Analysis, 46, 221–249. Caillerie, D., Raoult, A., & Sanchez Palencia, E. (2006). On internal and boundary layers with unbounded energy in thin shell theory. Hyperbolic characteristic and non characteristic cases. Asymptotic Analysis, 46, 189–220. Díaz, J. I., & Sánchez-Palencia, E. (2007). On slender shells and related problems suggested by Torroja’s structures. Asymptotic Analysis, 52, 259–297. Díaz, J. I., & Sánchez-Palencia, E. (2009). On a problem of slender slightly hyperbolic shells suggested by Torroja’s structures. CRAS Mechanique, 337, 1–7. Lions, J. L. (1973). Perturbations Singuliè res dans les Problèmes aux Limites et en Contrôle Optimal. Lecture notes in mathematics (Vol. 323). Berlin: SpringerVerlag. Lions, J. L., & Magenes, E. (1972). Non-homogeneous boundary value problems and applications (Vol. I). Springer-Verlag. Niordson, F. (1985). Shell theory. Amsterdam: North Holland. Sanchez-Hubert, J., & Sanchez Palencia, E. (1997). Coques é lastiques minces. Propriétés asymptotiques. Paris: Masson. Sanchez Palencia, E. (2000). On a singular perturbation going out of the energy space. Journal de Mathématiques Pures et Appliquées, 79, 591–602. Sanchez Palencia, E. (2006). Rigidification effect of a slight folding in slender plates. In A. Piatnitski (Ed.), Multiscale problems and asymptotic analysis (pp. 337–351). Gakkotosho. Sanchez Palencia, E., Millet, O., & Bé chet, F. (2010). Singular problems in shell theory: Computing and asymptotics. Lecture notes in applied and computational mechanics (Vol. 54). Berlin: Springer-Verlag. Torroja, E. (1957). New developments in shell structures. In II Symposium on concrete shelle roof construction, Oslo. Torroja, E. (1958). The structures of Eduardo Torroja. New York: F.W. Dodge Corporation.