Multiple solutions and numerical analysis to the dynamic and stationary models coupling a delayed energy balance model involving latent heat and discontinuous albedo with a deep ocean

Thumbnail Image
Full text at PDC
Publication Date
Hidalgo, A.
Tello, L.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Royal Society Publising
Google Scholar
Research Projects
Organizational Units
Journal Issue
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension.In this work,we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition, and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous Energy Balance Models (EBMs). The numerical method applied to the model is based on a finite volume scheme with nonlinear WENO reconstruction and Runge-Kutta TVD for time integration
Unesco subjects
Budyko MI. 1969 The effects of solar radiation variations on the climate of the Earth. Tellus 21, 611–619 (doi:10.1111/j.2153-3490.1969.tb00466.x) Díaz JI, Lions JL (eds). 1994 Environment, economics and their mathematical models. Research Notes in Applied Mathematics, no. 35. Paris, France: Masson. Díaz JI (ed.). 1996 The mathematics of models in climatology and environment. ASI NATO Global Change Series I, No. 48, Heidelberg, Germany: Springer. Díaz JI (ed.). 2003 Ocean circulation and pollution control. A mathematical and numerical inquiry. Lecture Notes, EMS Volume. Berlin, Germany: Springer. Brezis H, Díaz JI. 2003 Mathematics and environment. Special issue of Rev. R. Acad. Cien. Serie A Matem (RACSAM), 96, 3. Watts RG, Morantine M. 1990 Rapid climatic change and the deep ocean, Clim. Change 16, 83–97. (doi:10.1007/BF00137347) North GR, Cahalan RF. 1982 Predictability in a solvable stochastic climate model. J. Atmos. Sci. 38, 504–513. (doi:10.1175/1520-0469(1981)038<0504:PIASSC>2.0.CO;2) Ghil M, Childress S. 1987 Topics in geophysical fluid dynamics: atmospheric dynamics dynamo theory and climate dynamics. Applied Mathematical Sciences. Berlin, Germany: Springer. Díaz G, Díaz JI. 2002 On a stochastic parabolic PDE arising in climatology. Rev. R. Acad. Cien. A Math. 96, 123–128. Díaz JI, Langa JA, Valero J. 2009 On the asymptotic behaviour of solutions of a stochastic energy balance climate model. Physica D 238, 880–887 (doi:10.1016/j.physd.2009.02.010) Sanchez-Palencia E. 1980 Non-homogeneous media and vibration theory. Berlin, Germany: Springer. Díaz JI, Hetzer G. 1998 A functional quasilinear reaction-diffusion equation arising in climatology. Equations aux derivees partielles et applications. Articles dedies a J.-L. Lions, pp. 461–480. Paris, France: Elsevier. Díaz JI, Hetzer G, Tello L. 2006 An energy balance model climate model with hysteresis. Nonlinear Anal. 64, 2053–2074. (doi:10.1016/ Bhattacharya K, Ghil M, Vulis IL. 1982 Internal variability of an energy-balance model with delayed albedo effects. J. Atmos. Sci. 39, 1747–1773. (doi:10.1175/1520-0469(1982)039<1747:IVOAEB>2.0.CO;2) Mengel JG, Short DA, North GR. 1988 Seasonal snowline instability in an energy balance model. Clim. Dyn. 2, 127–131. (doi:10.1007/BF01053470) Cane MA, Zebiak SE. 1985 A theory for E1 Niño and the southern oscillation. Science 228, 1084–1087(doi:10.1126/science.228.4703.1085) Suarez MJ, Schopf PS. 1988 A delayed action oscillator for ENSO. J. Atmos. Sci. J5, 3283–3287.(doi:10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2) Davey MK, Anderson DLT, Lawrence S. 1996 A simulation of variability of ENSO forecast skill. J. Clim. 9, 240–246. (doi:10.1175/1520-0442(1996)009<0240:ASOVOE>2.0.CO;2) Ghil M, Zaliapin I, Thompson S. 2008 A delay differential model of ENSO variability: parametric instability and the distribution of extremes. Nonlin. Proc. Geophys. 15, 417–433.(doi:10.5194/npg-15-417-2008) Hale JK. 1977 Theory of functional differential equations. New York, NY: Springer. Wu J. 1996 Theory and applications of partial functional differential equations. New York, NY: Springer. Díaz JI, Hernández J, Tello L. 1997 On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology. J. Math. Anal. Appl. 216, 593–613.(doi:10.1006/jmaa.1997.5691) Tello L. 2009 Estabilización de soluciones para un problema parabólico con condición de contorno dinámica y difusiva. Actas del XXI CEDYA/ VIII CMA. Universidad de Castilla La Mancha. Casal AC, Díaz JI. 2006 On the complex Ginzburg–Landau equation with a delayed feedback. Math. Models Methods Appl. Sci. 16, 11–17. (doi:10.1142/S0218202506001030) Casal C, Díaz JI, Stich M. 2007 Control of turbulence in oscillatory reaction–diffusion systems through a combination of global and local feedback. Phys. Rev. E 76, 0362091–0362099. Casal AC, Díaz JI, Vegas JM. 2011 Finite extinction time property for a delayed linear problem on a manifold without boundary. Discrete Cont. Dyn. Syst. 2011 (Special issue), 265–271. Arcoya D, Díaz JI, Tello L. 1998 S-shaped bifurcation branch in a quasilinear multivalued model arising in climatology. J. Diff. Equ. 150, 215–225 (doi:10.1006/jdeq.1998.3502) Díaz JI. 1994 Approximate controlability for some simple climate models. In Environment, economic and their mathematical models (eds JI Díaz, JL Lions), pp. 29–43. Research Notes in Applied Mathematics, no. 35. Paris, France: Masson. Díaz JI. 1994 Controllability and obstruction for some non linear parabolic problems in climatology. In Modelado de Sistemas en Oceanografía, Climatología y Ciencias Medio Ambientales (eds C Pares, A Valle), pp. 43–58. Málaga, Spain: Universidad de Málaga. Díaz JI, Lions JL. 2003.On the approximate controllability of Stackelberg–Nash strategies. In Ocean circulation and pollution control. A mathematical and numerical inquiry (ed. JI Díaz). Lecture Notes, EMS Volume, Proceedings of the Diderot Videoconference Amsterdam-Madrid-Venice, Lecture-Notes, pp. 17–28. Berlin, Germany: Springer. Dautray R, Díaz JI. 2006 Lo infinitamente pequeño, lo infinitamente grande y lo infinitamente complejo: el medio ambiente. Rev. R. Acad. Cienc. Exact. Fis. Nat. 100, 13–24. von Neumann J. 1955 Collected Works. Vol VI, Pergamon Press, 1963, pp. 504–519. (Reprinted original in Fortune, 1955). Díaz JI. 2002 On the von Neumann problem and the approximate controllability of Stackelberg–Nash strategies for some environmental problems. Rev. R. Acad. Cien. A Math. 96, 343–356. Bermejo R, Carpio J, Díaz JI, Tello L. 2009 Mathematical and numerical analysis of a nonlinear diffusive climate energy balance model. Math. Comput. Model. 49, 1180–1210.(doi:10.1016/j.mcm.2008.04.010) Rasool I. 1993 Système terre. Paris, France: Flammarion. Sellers WD. 1969 A global climatic model based on the energy balance of the earth–atmosphere system. J. Appl. Meteorol. 8, 392–400. (doi:10.1175/1520-0450(1969)008<0392: AGCMBO>2.0.CO;2) Crowley TL, North GR. 1991 Paleoclimatology. Oxford, UK: Oxford University Press. Henderson-Sellers A, McGuffie K. 1987 A climate modelling primer. Chichester, UK: John Wiley& Sons. Lions JL, Temam R, Wang S. 1992 New formulations of the primitive equations of atmosphere and applications, Nonlinearity 5, 237–288. (doi:10.1088/0951-7715/5/2/001) Kiehl JT. 1992 Atmospheric general circulation modeling. In Climate system modeling (ed.KE Trenberth), pp. 319–370. Cambridge, UK: Cambridge University Press. Stone PH. 1972 A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci. 29, 405–418. (doi:10.1175/1520-0469(1972)029<0405: ASRDMF>2.0.CO;2) Roques L, Chekroun MD, Cristofol M, Soubeyrand S, Ghil M. 2014 Parameter estimation for energy balance models with memory. Proc. R. Soc. A 470, 20140349. (doi:10.1098/ rspa.2014.0349) Díaz JI, Tello L. 1999 A nonlinear parabolic problem on a Riemannian manifold without boundary arising in climatology. Collectanea Math. 50, 19–51. Badii M, Díaz JI. 2010 On the time periodic free boundary associated with some nonlinear parabolic equations. Bound. Value Probl. 2010, 147301. (doi:10.1155/2010/147301) Brezis H. 1973 Operateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert. Amsterdam, The Netherlands: North Holland. Aubin T. 1982 Nonlinear analysis on manifolds. Monge–Ampere equations. Berlin, Germany: Springer. Vrabie II. 1995 Compactness methods for nonlinear evolutions. London, UK: Pitman Longman. Díaz JI, Jimenez R. 1984 Aplicación a la teoria no lineal de semigrupos a un operador pseudodiferencial. In Actas VII CEDYA, pp. 137–142. Granada, Spain: University of Granada. Bejenaru I, Díaz JI, Vrabie II. 2001 An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamic boundary conditions. Electron. J. Diff. Equ. 50, 1–19. Di Benedetto E, Fasano A, Primicerio M. 1985 On a free boundary problem related to an irreversible process. Control Cibernet. 14, 195–219. Friedman A. 1964 Partial differential equations of parabolic type. Englewood, Cliffs, NJ: PrenticeHall. Díaz JI, Tello L. 2009 On the coupling between the deep ocean and an atmospheric balanced climate model. Maths and Water. Monografías de la Real Academia de Ciencias Exactas, Físicas,Químicas y Naturales de Zaragoza. 31, 67–76. Díaz JI. 1993 Mathematical analysis of some diffusive energy balance climate models. In Mathematics, climate and environment (eds JI Díaz, JL Lions), pp. 28–56. Paris, France: Masson. Díaz JI, Tello L. 2008 On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete Continuous Dyn. Syst. Ser. S, 1, 253–262.(doi:10.3934/dcdss.2008.1.253) Amann H. 1976 Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709. (doi:10.1137/1018114) Brezis H. 1971 Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. In Contributions to nonlinear functional analysis(ed. E Zarantonello), pp. 101–156. New York, NY: Academic Press. Balsara DS, Shu CW. 2000 Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comp. Phys. 160, 405–452. (doi:10.1006/ jcph.2000.6443) Titarev VA, Toro EF. 2004 Finite-volume WENO schemes for three-dimensional conservation laws. J. Comp. Phys. 201, 238–260.(doi:10.1016/ Titarev VA, Toro EF. 2005 ADER schemes for three-dimensional non-linear hyperbolic systems. J. Comp. Phys. 204, 715–736. (doi:10.1016/ Dumbser M, Enaux C, Toro EF. 2008 Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comp. Phys. 7, 3971–4001(doi:10.1016/ Toro EF, Hidalgo A. 2009 ADER finite volume schemes for nonlinear reaction–diffusion equations. Appl. Numer. Math. 59, 73–100. (doi:10.1016/j.apnum.2007.12.001) Hidalgo A, Tello L. 2011 A finite volume scheme for simulating the coupling between deep ocean and an atmospheric energy balance model. In Modern mathematical tools and techniques in capturing complexity (eds L Pardo, N Balakrishman, M Angeles). Springer Series in Complexity,pp. 239–255. Berlin, Germany: Springer.