Shear viscosity in a CFL quark star

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Int School Advanced Studies
Google Scholar
Research Projects
Organizational Units
Journal Issue
We compute the mean free path and shear viscosity in the color-flavor locked (CFL) phase of dense quark matter at low temperature T, when the contributions of mesons, quarks and gluons to the transport coefficients are Boltzmann suppressed. CFL quark matter displays superfluid properties, and transport phenomena in such cold regime are dominated by phonon-phonon scattering. We study superfluid phonons within thermal field theory and compute the mean free path associated to their most relevant collision processes. Small-angle processes turn out to be more efficient in slowing transport phenomena in the CFL matter, while the mean free path relevant for the shear viscosity is less sensitive to collinear scattering due to the presence of zero modes in the Boltzmann equation. In analogy with superfluid He-4, we find the same T power law for the superfluid phonon damping rate and mean free path. Our results are relevant for the study of rotational properties of compact stars, and correct wrong estimates existing in the literature.
© SISSA 2005 We thank D.T. Son, R. Pisarski and L. Yaffe for very useful discussions. C.M. thanks the I.N.T. at the University of Washington for its hospitality and partial support during the completion of this article. This work has been supported by grants FPA 2000-0956, BFM 2002-01003, FPA2001-3031 from MCYT (Spain)
Unesco subjects
[1] D. Bailin and A. Love, Superfluidity and superconductivity in relativistic fermion systems, Phys. Rept. 107 (1984) 325. [2] K. Rajagopal and F. Wilczek, The condensed matter physics of QCD, hep-ph/0011333. [3] M.G. Alford, Color superconducting quark matter, Ann. Rev. Nucl. Part. Sci. 51 (2001) 131 [hep-ph/0102047]. [4] M.G. Alford, K. Rajagopal and F. Wilczek, Color-flavor locking and chiral symmetry breaking in high density QCD, Nucl. Phys. B 537 (1999) 443 [hep-ph/9804403]. [5] N. Andersson, A new class of unstable modes of rotating relativistic stars, Astrophys. J. 502 (1998) 708 [gr-qc/9706075]. [6] J. Madsen, Bulk viscosity of strange dark matter, damping of quark star vibration and the maximum rotation rate of pulsars, Phys. Rev. D 46 (1992) 3290. [7] J. Madsen, Probing strange stars and color superconductivity by R-mode instabilities in millisecond pulsars, Phys. Rev. Lett. 85 (2000) 10 [astro-ph/9912418]. [8] K. Rajagopal and F. Wilczek, Enforced electrical neutrality of the color-flavor locked phase, Phys. Rev. Lett. 86 (2001) 3492 [hep-ph/0012039]. [9] S. Reddy, M. Sadzikowski and M. Tachibana, Neutrino rates in color flavor locked quark matter, Nucl. Phys. A 714 (2003) 337 [nucl-th/0203011]. [10] P. Jaikumar, M. Prakash and T. Schafer, Neutrino emission from Goldstone modes in dense quark matter, Phys. Rev. D 66 (2002) 063003 [astro-ph/0203088]. [11] R. Casalbuoni and R. Gatto, Effective theory for color-flavor locking in high density QCD, Phys. Lett. B 464 (1999) 111 [hep-ph/9908227]. [12] D.T. Son and M.A. Stephanov, Inverse meson mass ordering in color-flavor-locking phase of high density QCD, Phys. Rev. D 61 (2000) 074012 [hep-ph/9910491]; Inverse meson mass ordering in color-flavor-locking phase of high density QCD: erratum, Phys. Rev. D 62 (2000)059902 [hep-ph/0004095]. [13] P.F. Bedaque and T. Schafer, High density quark matter under stress, Nucl. Phys. A 697(2002) 802 [hep-ph/0105150]. [14] D.B. Kaplan and S. Reddy, Novel phases and transitions in quark matter, Phys. Rev. D 65 (2002) 054042 [hep-ph/0107265]. [15] C. Manuel and M.H.G. Tytgat, Masses of the goldstone modes in the CFL phase of QCD at finite density, Phys. Lett. B 479 (2000) 190 [hep-ph/0001095]. [16] T. Schafer, Instanton effects in QCD at high baryon density, Phys. Rev. D 65 (2002) 094033 [hep-ph/0201189]. [17] I.A. Shovkovy and P.J. Ellis, Thermal conductivity of dense quark matter and cooling of stars, Phys. Rev. D 66 (2002) 015802 [hep-ph/0204132]. [18] I.A. Shovkovy and P.J. Ellis, Optically opaque color-flavor locked phase inside compact stars, Phys. Rev. D 67 (2003) 048801 [hep-ph/0211049]. [19] D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199. [20] K. Zarembo, Dispersion laws for Goldstone bosons in a color superconductor, Phys. Rev. D 62 (2000) 054003 [hep-ph/0002123]. [21] H.J. Maris, Hydrodynamics of superfluid helium below O.6 K. Viscosity of the normal fluid, Phys. Rev. A 8 (1973) 1980. [22] P.C. Hohenberg and P.C. Martin, Microscopic theory of superfluid helium, Ann. Phys. (NY) 34 (1965) 291. [23] S. T. Beliaev, Energy spectrum of a non-idel Bose gas, Sov. J. Phys. 7 (1958) 289; Sov. J. Phys. 34 (1958) 299. [24] J.O. Andersen, Effective field theory for Goldstone bosons in nonrelativistic superfluids, cond-mat/0209243. [25] L. Landau and L. Lifschitz, Statistical physics, vol. 5; Fluid mechanics, Prentince Hall, New Jersey, vol. 6. [26] V.V. Lebedev and I.M. Khalatnikov, Relativistic hydrodynamics of a superfluid, Zh. Eksp. Teor. Fiz. 56 (1982) 1601; B. Carter and I.M. Khalatnikov, Canonically covariant formulation of Landaus Newtonian superfluid dynamics, Rev. Mod. Phys. 6 (1994) 277. [27] D.T. Son, unpublished and private communication. [28] A. Dobado and F.J. Llanes-Estrada, The viscosity of meson matter, Phys. Rev. D 69 (2004) 116004 [hep ph/0309324]. [29] D.F. Litim and C. Manuel, Photon self-energy in a color superconductor, Phys. Rev. D 64 (2001) 094013 [hep-ph/0105165]. [30] C. Manuel and K. Rajagopal, Illuminating dense quark matter, Phys. Rev. Lett. 88 (2002)042003 [hep-ph/0107211]. [31] S.R. de Groot, W.A. Van Leeuwen and Ch. van Weert, Relativistic kinetic theory, North-Holland, Amsterdam, 1980. [32] A. Dobado, et al., Effective lagrangians for the standard model, Springer Verlag, Berlin-Heidelberg, 1997. [33] L.D. Landau and I. Pomeranchuk, Electron cascade process at very high-energies, Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 735. [34] L.D. Landau and I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies, Dokl. Akad. Nauk Ser. Fiz. 92 (1953) 535. [35] P. Arnold, G.D. Moore and L.G. Yaffe, Effective kinetic theory for high temperature gauge theories, JHEP 01 (2003) 030 [hep-ph/0209353]. [36] G.P. Lepage, Vegas: an adaptive multidimensional integration program, CLNS-80/447