Dynamical mass generation in Landau gauge QCD

Thumbnail Image
Full text at PDC
Publication Date
Fischer, C. S.
Alkofer, R.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Elsevier Science BV
Google Scholar
Research Projects
Organizational Units
Journal Issue
We summarise results on the infrared behaviour of Landau gauge QCD from the Green's functions approach and lattice calculations. Approximate, nonperturbative solutions for the ghost, gluon and quark propagators as well as first results for the quark-gluon vertex from a coupled set of Dyson-Schwinger equations are compared to quenched and unquenched lattice results. Almost quantitative agreement is found for all three propagators. Similar effects of unquenching are found in both approaches. The dynamically generated quark masses are close to 'phenomenological' values. First results for the quark-gluon vertex indicate a complex tenser structure of the non-perturbative quark gluon interaction.
© 2004 Elsevier B.V. All rights reserved. We are grateful to M. Bhagwat, H. Gies, C. Roberts, J. Skullerud, P. Tandy, A. Williams, and D. Zwanziger for helpful discussions. This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under contracts Al 279/3-3, Al 279/3-4, Fi 970/2-1 and GRK683. F.L. thanks the German DAAD and Univ. Complutense for support and the members of the Institute for Theoretical Physics of the University of T¨ubingen for their hospitality during his visit, when the project reported in section 4 has been started. We thank A. Kizilers¨u, A. Thomas and A. Williams for the organisation of this exceptional conference QCD DOWN UNDER. Workshop on Quantum Chromodynamics (2004. Adelaide, Australia)
Unesco subjects
1. P. Maris and C. D. Roberts, Int. J. Mod. Phys. E12 (2003) 297. 2. R. Alkofer and L. von Smekal, Phys. Rept. 353 (2001) 281. 3. C. D. Roberts and S. M. Schmidt, Prog. Part. Nucl. Phys. 45 (2000) S1. 4. L. von Smekal, R. Alkofer and A. Hauck, Phys. Rev. Lett. 79 (1997) 3591; Annals Phys. 267 (1998) 1. 5. C. S. Fischer and R. Alkofer, Phys. Lett. B536 (2002) 177; R. Alkofer, C. S. Fischer and L. von Smekal, Acta Phys. Slov. 52 (2002) 191. 6. C. S. Fischer, R. Alkofer and H. Reinhardt, Phys. Rev. D65 (2002) 094008. 7. C. Lerche and L. von Smekal, Phys. Rev. D65 (2002) 125006. 8. D. Zwanziger, Phys. Rev. D65 (2002) 094039 9. P. Watson and R. Alkofer, Phys. Rev. Lett. 86 (2001) 5239 . 10. N. Nakanishi and I. Ojima, “Covariant Operator Formalism Of Gauge Theories And Quantum Gravity,” World Sci. Lect. Notes Phys. 27 (1990) 1. 11. T. Kugo and I. Ojima, Prog. Theor. Phys. Suppl. 66 (1979) 1. 12. D. Zwanziger, Phys. Rev. D69 (2004) 016002. 13. J. M. Pawlowski, D. F. Litim, S. Nedelko and L. von Smekal, arXiv:hep-th/0312324; C. S. Fischer and H. Gies, in preparation. 14. C. S. Fischer and R. Alkofer, Phys. Rev. D67 (2003) 094020. 15. D. V. Shirkov and I. L. Solovtsov, Phys. Rev. Lett. 79 1997) 1209. 16. P. O. Bowman, U. M. Heller and A. G. Williams, Phys. Rev. D66 (2002) 014505; J. B. Zhang et al., arXiv: heplat/ 0301018. 17. F. D. Bonnet et al., Phys. Rev. D64 (2001) 034501. 18. P. O. Bowman et al., arXiv:hep-lat/0402032. 19. D. C. Curtis and M. R. Pennington, Phys. Rev. D42 (1990) 4165. 20. R. Alkofer, W. Detmold, C. S. Fischer and P. Maris, arXiv:hep-ph/0309077; R. Alkofer, W. Detmold, C. S. Fischer and P. Maris, arXiv:hep-ph/0309078. 21. M. S. Bhagwat et al., arXiv:nucl-th/0403012. 22. J. I. Skullerud et al., JHEP 0304 (2003) 047. 23. P. Watson, W. Cassing and P. C. Tandy, arXiv:hep ph/0406340. 24. D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D67 (2003) 014027.