Entropy decay for Davies semigroups of a one dimensional quantum lattice

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
Given a finite-range, translation-invariant commuting system Hamiltonians on a spin chain, we show that the Davies semigroup describing the reduced dynamics resulting from the joint Hamiltonian evolution of a spin chain weakly coupled to a large heat bath thermalizes rapidly at any temperature. More precisely, we prove that the relative entropy between any evolved state and the equilibrium Gibbs state contracts exponentially fast with an exponent that scales logarithmically with the length of the chain. Our theorem extends a seminal result of Holley and Stroock [40] to the quantum setting, up to a logarithmic overhead, as well as provides an exponential improvement over the non-closure of the gap proved by Brandao and Kastoryano [43]. This has wide-ranging applications to the study of many-body in and out-of-equilibrium quantum systems. Our proof relies upon a recently derived strong decay of correlations for Gibbs states of one dimensional, translation-invariant local Hamiltonians, and tools from the theory of operator spaces.
[1] D. Aharonov, I. Arad, Z. Landau, and U. Vazirani. The detectability lemma and quantum gap amplification. In Proceedings of the forty-first annual ACM symposium on Theory of computing, pages 417–426, 2009. [2] R. Alicki, M. Fannes, and M. Horodecki. On thermalization in Kitaev's 2D model. Journal of Physics A: Mathematical and Theoretical, 42(6):065303, jan 2009. [3] R. Alicki, M. Horodecki, P. Horodecki, and R. Horodecki. On thermal stability of topological qubit in Kitaev's 4D model. Open Systems & Information Dynamics, 17(01):1–20, Mar. 2010. [4] A. Anshu, I. Arad, and T. Vidick. Simple proof of the detectability lemma and spectral gap amplification. Physical Review B, 93(20):205142, 2016. [5] H. Araki. Gibbs states of a one dimensional quantum lattice. Communications in Mathe�matical Physics, 14(2):120–157, 1969. [6] M. Baillet, Y. Denizeau, and J.-F. Havet. Indice d’une espérance conditionnelle. Compositio mathematica, 66(2):199–236, 1988. [7] I. Bardet. Estimating the decoherence time using non-commutative functional inequalities. arXiv preprint arXiv:1710.01039, 2017. [8] I. Bardet, Á. Capel, L. Gao, A. Lucia, D. Pérez-García, and C. Rouzé. Rapid thermalization of spin chain commuting hamiltonians. in preparation, 2021. [9] I. Bardet, Á. Capel, A. Lucia, D. Pérez-Garcia, and C. Rouzé. On the modified logarithmic Sobolev inequality for the heat-bath dynamics for 1D systems. Journal of Mathematical Physics, 62(6):061901, 2021. [10] I. Bardet, Á. Capel, and C. Rouzé. Approximate tensorization of the relative entropy for noncommuting conditional expectations. Annales Henri Poincaré, July 2021. [11] I. Bardet and C. Rouzé. Hypercontractivity and logarithmic Sobolev inequality for non�primitive quantum Markov semigroups and estimation of decoherence rates. arXiv preprint arXiv:1803.05379, 2018. [12] S. Beigi, N. Datta, and C. Rouzé. Quantum reverse hypercontractivity: its tensorization and application to strong converses. Communications in Mathematical Physics, 376(2):753–794, 2018. [13] J. Bergh and J. Löfström. Interpolation spaces: an introduction, volume 223. Springer Science & Business Media, 2012. [14] R. Bhatia. Matrix analysis, volume 169. Springer Science & Business Media, 2013. [15] A. Bluhm, Á. Capel, and A. Pérez-Hernández. Exponential decay of mutual information for Gibbs states of local Hamiltonians. arXiv preprint arXiv:2104.04419, 2021. [16] M. Brannan, L. Gao, and M. Junge. Complete logarithmic Sobolev inequality via Ricci curvature bounded below II. Journal of Topology and Analysis, pages 1–54, 2021. [17] H. J. Briegel and R. Raussendorf. Persistent entanglement in arrays of interacting particles. Physical Review Letters, 86(5):910–913, Jan. 2001. [18] Á. Capel. Quantum Logarithmic Sobolev Inequalities for Quantum Many-Body Systems: An approach via Quasi-Factorization of the Relative Entropy. Ph.D. thesis at Universidad Autónoma de Madrid, 2019. [19] Á. Capel, A. Lucia, and D. Pérez-Garcia. Superadditivity of quantum relative entropy for general states. IEEE Transactions on Information Theory, 64(7):4758–4765, 2017. [20] Á. Capel, A. Lucia, and D. Pérez-Garcia. Quantum conditional relative entropy and quasi�factorization of the relative entropy. Journal of Physics A: Mathematical and Theoretical, 51(48):484001, 2018. [21] Á. Capel, C. Rouzé, and D. Stilck França. The modified logarithmic Sobolev inequality for quantum spin systems: classical and commuting nearest neighbour interactions. arXiv preprint, arXiv:2009.11817, 2020. [22] R. Carbone and A. Martinelli. Logarithmic Sobolev inequalities in non-commutative algebras. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 18(02):1550011, 2015. [23] F. Cesi. Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields. Probability Theory and Related Fields, 120(4):569–584, 2001. [24] X. Chen, Z.-C. Gu, and X.-G. Wen. Classification of gapped symmetric phases in one�dimensional spin systems. Physical Review B, 83(3), Jan. 2011. [25] A. Coser and D. Pérez-García. Classification of phases for mixed states via fast dissipative evolution. Quantum, 3:174, 2019. [26] T. S. Cubitt, A. Lucia, S. Michalakis, and D. Pérez-García. Stability of local quantum dissipative systems. Communications in Mathematical Physics, 337(3):1275–1315, Apr. 2015. [27] P. Dai Pra, A. M. Paganoni, and G. Posta. Entropy inequalities for unbounded spin systems. The Annals of Probability, 30(4):1959–1976, 10 2002. [28] N. Datta. Min-and max-relative entropies and a new entanglement monotone. IEEE Trans�actions on Information Theory, 55(6):2816–2826, 2009. [29] E. Davies. Quantum theory of open systems. London, New York: Academic Press, 1976. [30] E. Davies. Generators of dynamical semigroups. Journal of Functional Analysis, 34(3):421–432, Dec. 1979. [31] E. B. Davies. One-parameter semigroups (academic press, london, 1980), viii 230 pp. Pro�ceedings of the Edinburgh Mathematical Society, 26(1):115–116, 1983. [32] G. De Palma and C. Rouzé. Quantum concentration inequalities. arXiv preprint arXiv:2106.15819, 2021. [33] E. Effros and Z. Ruan. Operator Spaces. London Mathematical Society monographs. Claren�don Press, 2000. [34] A. Frigerio and M. Verri. Long-time asymptotic properties of dynamical semigroups on W∗-algebras. Mathematische Zeitschrift, 180(3):275–286, 1982. [35] L. Gao, M. Junge, and N. LaRacuente. Fisher information and logarithmic Sobolev inequal�ity for matrix-valued functions. In Annales Henri Poincaré, volume 21, pages 3409–3478.Springer, 2020. [36] L. Gao, M. Junge, and N. LaRacuente. Relative entropy for von Neumann subalgebras. International Journal of Mathematics, 31(06):2050046, 2020. [37] L. Gao, M. Junge, and H. Li. Geometric approach towards complete logarithmic Sobolev inequalities. arXiv preprint arXiv:2102.04434, 2021. [38] L. Gao and C. Rouzé. Complete entropic inequalities for quantum Markov chains. arXiv preprint arXiv:2102.04146, 2021. [39] J. Gu, Z. Yin, and H. Zhang. Interpolation of quasi noncommutative Lp-spaces. arXiv preprint arXiv:1905.08491, 2019. [40] R. A. Holley and D. W. Stroock. Uniform and L2 convergence in one dimensional stochastic Ising models. Communications in Mathematical Physics, 123(1):85–93, 1989. [41] M. Junge, N. LaRacuente, and C. Rouzé. Stability of logarithmic Sobolev inequalities under a noncommutative change of measure. arXiv preprint arXiv:1911.08533, 2019. [42] M. Junge and J. Parcet. Mixed-norm inequalities and operator space Lp embedding theory. American Mathematical Soc., 2010. [43] M. J. Kastoryano and F. G. Brandao. Quantum Gibbs samplers: the commuting case. Communications in Mathematical Physics, 344(3):915–957, 2016. [44] M. J. Kastoryano and K. Temme. Quantum logarithmic Sobolev inequalities and rapid mixing. Journal of Mathematical Physics, 54(5):052202, May 2013. [45] N. LaRacuente. Quasi-factorization and multiplicative comparison of subalgebra-relative entropy. arXiv preprint arXiv:1912.00983, 2019. [46] A. Lucia, D. Pérez-García, and A. Pérez-Hernández. Thermalization in Kitaev’s quantum double models via Tensor Network techniques. arXiv preprint arXiv:2107.01628, 2021. [47] M. McGinley and N. R. Cooper. Interacting symmetry-protected topological phases out of equilibrium. Physical Review Research, 1(3):033204, 2019. [48] M. McGinley and N. R. Cooper. Fragility of time-reversal symmetry protected topological phases. Nature Physics, 16(12):1181–1183, 2020. [49] A. Müller-Hermes, D. S. França, and M. M. Wolf. Entropy production of doubly stochastic channels. Journal of Mathematical Physics, 57:022203, 2016. [50] A. Müller-Hermes, D. S. França, and M. M. Wolf. Relative entropy convergence for depo�larizing channels. Journal of Mathematical Physics, 57:022202, 2016. [51] Ş. Nacu. Glauber dynamics on the cycle is monotone. Probability theory and related fields, 127(2):177–185, 2003. [52] G. D. Palma, M. Marvian, D. Trevisan, and S. Lloyd. The quantum Wasserstein distance of order 1. IEEE Transactions on Information Theory, pages 1–1, 2021. [53] W. L. Paschke. Inner product modules over B∗-algebras. Transactions of the American Mathematical Society, 182:443–468, 1973. [54] M. Pimsner and S. Popa. Entropy and index for subfactors. Annales scientifiques de l’École Normale Supérieure, Ser. 4, 19(1):57–106, 1986. [55] G. Pisier. Non-commutative vector valued Lp-spaces and completely p-summing maps. Société mathématique de France, 1998. [56] G. Pisier. Introduction to operator space theory. Number 294. Cambridge University Press, 2003. [57] J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, Aug. 2018. [58] C. Rouzé and N. Datta. Concentration of quantum states from quantum functional and transportation cost inequalities. Journal of Mathematical Physics, 60(1):012202, Jan. 2019. [59] C. Rouzé and D. S. França. Learning quantum many-body systems from a few copies. arXiv preprint arXiv:2107.03333, 2021. [60] Z.-J. Ruan. Subspaces of C∗-algebras. Journal of Functional Analysis, 76(1):217–230, 1988. [61] W. Son, L. Amico, R. Fazio, A. Hamma, S. Pascazio, and V. Vedral. Quantum phase transi�tion between cluster and antiferromagnetic states. EPL (Europhysics Letters), 95(5):50001, Aug. 2011. [62] H. Spohn and J. L. Lebowitz. Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Advances in Chemical Physics, 38:109–142, 1978. [63] B. Zegarlinski. Log-Sobolev inequalities for infinite one dimensional lattice systems. Com�munications in Mathematical Physics, 133(1):147–162, Sept. 1990.