Publication: On the triviality of flows in Alexandroff spaces
Loading...
Official URL
Full text at PDC
Publication Date
2022
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We prove that the unique possible flow in an Alexandroff T0-space is the trivial one. On the way of motivation, we relate Alexandroff spaces with topological hyperspaces.
Description
UCM subjects
Unesco subjects
Keywords
Citation
[1] P.S. Alexandroff. Diskrete R¨aume. Mathematiceskii Sbornik (N.S.), 2(3):501–519, 1937.
[2] M. Alonso-Mor´on and A. Gonz´alez G´omez. Homotopical properties of upper semifinite
hyperspaces of compacta. Topol. App., 155(9):927–981, 2008.
[3] P. Bilski. On the inverse limits of t0-Alexandroff spaces. Glas. Mat., 52(2):207–219, 2017.
[4] P. J. Chocano, M. A. Mor´on, and F. R. Ruiz del Portal. Topological realizations of groups
in alexandroff spaces. Rev. R. Acad. Cien. Serie A. Mat., 115(25):DOI: 10.1007/s13398–
020–00964–7, 2021.
[5] P.J. Chocano. Computational Methods in Topology and Dynamical Systems. PhD thesis,
Universidad Complutense de Madrid, 2021.
[6] E. Cuchillo-Iba˜nez, M.A. Mor´on, and F.R. Ru´ız del Portal. Lower semifinite topology in
hyperspaces. Topol. Proc., 17:29–39, 1992.
[7] E. Cuchillo-Iba˜nez, M.A. Mor´on, and F.R. Ru´ız del Portal. A note on isomorphic groups
and nonhomeomorphic spaces. Acta Math. Hunar., 82(4):297–300, 1999.
[8] J.P. May. Finite spaces and larger contexts. Unpublished book, 2016.
[9] M.C. McCord. Singular homology groups and homotopy groups of finite topological
spaces. Duke Math. J., 33(3):465–474, 1966.
[10] E. Michael. Topologies on spaces of subsets. Trans. Amer. Math. Soc., 71:152–182, 1951.
[11] D. Mond´ejar. Hyperspaces, Shape Theory and Computational Topology. PhD thesis,
Universidad Complutense de Madrid, 2015.
[12] D. Mond´ejar and M.A. Mor´on. Reconstruction of compacta by finite approximation and
inverse persistence. Rev. Mat. Complut., pages DOI:10.1007/s13163–020–00356–w, 2020.