On the triviality of flows in Alexandroff spaces

Thumbnail Image
Official URL
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Google Scholar
Research Projects
Organizational Units
Journal Issue
We prove that the unique possible flow in an Alexandroff T0-space is the trivial one. On the way of motivation, we relate Alexandroff spaces with topological hyperspaces.
[1] P.S. Alexandroff. Diskrete R¨aume. Mathematiceskii Sbornik (N.S.), 2(3):501–519, 1937. [2] M. Alonso-Mor´on and A. Gonz´alez G´omez. Homotopical properties of upper semifinite hyperspaces of compacta. Topol. App., 155(9):927–981, 2008. [3] P. Bilski. On the inverse limits of t0-Alexandroff spaces. Glas. Mat., 52(2):207–219, 2017. [4] P. J. Chocano, M. A. Mor´on, and F. R. Ruiz del Portal. Topological realizations of groups in alexandroff spaces. Rev. R. Acad. Cien. Serie A. Mat., 115(25):DOI: 10.1007/s13398– 020–00964–7, 2021. [5] P.J. Chocano. Computational Methods in Topology and Dynamical Systems. PhD thesis, Universidad Complutense de Madrid, 2021. [6] E. Cuchillo-Iba˜nez, M.A. Mor´on, and F.R. Ru´ız del Portal. Lower semifinite topology in hyperspaces. Topol. Proc., 17:29–39, 1992. [7] E. Cuchillo-Iba˜nez, M.A. Mor´on, and F.R. Ru´ız del Portal. A note on isomorphic groups and nonhomeomorphic spaces. Acta Math. Hunar., 82(4):297–300, 1999. [8] J.P. May. Finite spaces and larger contexts. Unpublished book, 2016. [9] M.C. McCord. Singular homology groups and homotopy groups of finite topological spaces. Duke Math. J., 33(3):465–474, 1966. [10] E. Michael. Topologies on spaces of subsets. Trans. Amer. Math. Soc., 71:152–182, 1951. [11] D. Mond´ejar. Hyperspaces, Shape Theory and Computational Topology. PhD thesis, Universidad Complutense de Madrid, 2015. [12] D. Mond´ejar and M.A. Mor´on. Reconstruction of compacta by finite approximation and inverse persistence. Rev. Mat. Complut., pages DOI:10.1007/s13163–020–00356–w, 2020.