StringENT test suite: ENT battery revisited for efficient P value computation

Research Projects
Organizational Units
Journal Issue
Random numbers play a key role in a wide variety of applications, ranging from mathematical simulation to cryptography. Generating random or pseudo-random numbers is not an easy task, especially when hardware, time and energy constraints are considered. In order to assess whether generators behave in a random fashion, there are several statistical test batteries. ENT is one of the simplest and most popular, at least in part due to its efficacy and speed. Nonetheless, only one of the tests of this suite provides a p value, which is the most useful and standard way to determine whether the randomness hypothesis holds, for a certain significance level. As a consequence of this, rather arbitrary and at times misleading bounds are set in order to decide which intervals are acceptable for its results. This paper introduces an extension of the battery, named StringENT, which, while sticking to the fast speed that makes ENT popular and useful, still succeeds in providing p values with which sound decisions can be made about the randomness of a sequence. It also highlights a flagrant randomness flaw that the classical ENT battery is not capable of detecting but the new StringENT notices, and introduces two additional tests.
1. Kawai, R., Masuda, H.: On simulation of tempered stable random variates. J. Comput. Appl. Math. 235(8), 2873–2887 (2011). 2. Wang, Y., Nicol, T.: On statistical distance based testing of pseudo random sequences and experiments with PHP and Debian Open SSL. Comput. Secur. 53, 44–64 (2015). 3. Wang, P., You, F., He, S.: Design of broadband compressed sampling receiver based on concurrent alternate random sequences. IEEE Access 7, 135525–135538 (2019). 4. Yao, Y., Chen, X., Kang, W., Zhang, Y., Zhao, W.: Thermal Brownian motion of Skyrmion for true random number generation. IEEE Trans. Electron Devices 67(6), 2553–2558 (2020). 5. Srikanth, C.: Certain sequence of arithmetic progressions and a new key sharing method. Cryptogr. Commun. 12, 597–612 (2020). 6. Gómez, A.I., Gómez-Pérez, D., Pillichshammer, F.: Secure pseudorandom bit generators and point sets with low star-discrepancy. J. Comput. Appl. Math. 396, 1–8 (2020). 7. De Matteis, A., Pagnutti, S.: Pseudorandom permutation. J. Comput. Appl. Math. 142(2), 367–375 (2020). S0377-0427(01)00425-3 8. Sarkar, P.: Modes of operations for encryption and authentication using stream ciphers supporting an initialisation vector. Cryptogr. Commun. 6, 189–231 (2014). 9. Ak, M., Hanoymak, T., Selçuk, A.A.: IND-CCA secure encryption based on a Zheng–Seberry scheme. J. Comput. Appl. Math. 259, 529–535 (2014). 10. Mohanty, A., Sutaria, K.B., Awano, H., Sato, T., Cao, Y.: RTN in scaled transistors for on-chip random seed generation. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25(8), 2248–2257 (2017). 11. Hamann, M., Krause, M.: On stream ciphers with provable beyondthe-birthday-bound security against time-memory-data tradeoff attacks. Cryptogr. Commun. 10, 959–1012 (2018). 12. Bharadwaj, B., Sairabanu, J.: Image encryption using a modified pseudo-random generator. In: 2020 International Conference on Emerging Trends in Information Technology and Engineering (icETITE), pp. 1–6 (2020). 2020.094 13. Tuncer, T., Avaro ˘glu, E.: Random number generation with LFSR based stream cipher algorithms. In: 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 171–175 (2017). https:// 14. Sarkar, S., Dey, P., Adhikari, A., Maitra, S.: Probabilistic signature based generalized framework for differential fault analysis of stream ciphers. Cryptogr. Commun. 9, 523–543 (2017). 15. Saha, R., Geetha, G., Kumar, G., Kim, T.-H., Buchanan, W.J.: MRC4: a modified RC4 algorithm using symmetric random function generator for improved cryptographic features. IEEE Access 7, 172045–172054 (2019). 16. Bontchev, B.: Modern trends in the automatic generation of content for video games. Serdica J. Comput. 2, 133–166 (2016) 17. Kristian Lundedal Nielsen, R., Grabarczyk, P.: Are loot boxes gambling? Random reward mechanisms in video games. Trans. Digit. Games Res. Assoc. 4(3), 171–207 (2019) 18. Almaraz Luengo, E., García Villalba, L.J.: Recommendations on statistical randomness test batteries for cryptographic purposes. ACM Comput. Surv. 54(4), 1–34 (2022). 19. Walker, J.: ENT: a pseudorandom number sequence test program. (2008) 20. Bassham, L.E., Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Barker, E.B., Leigh, S.D., Levenson, M., Vangel, M., Banks, D.L., Heckert, N.A., Dray, J.F., Vo, S.: SP 800-22 Rev. 1a. A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, National Institute of Standards & Technology, Gaithersburg, MD, USA (2010) 21. L’ecuyer, P., Simard, R.: Testu01: a C library for empirical testing of random number generators. ACM Trans. Math. Softw. 33(4), 1–40 (2007) 22. Brown, R.G., Eddelbuettel, D., Bauer, D.: Dieharder: a random number test suite (version 3.31.1). ~rgb/General/dieharder.php (2014) 23. Gray, R.M.: Entropy and Information Theory, 1st edn. Springer, New York (2013) 24. Kowalski, C.J.: On the effects of non-normality on the distribution of the sample product-moment correlation coefficient. Appl. Stat. 21(1), 1–12 (1972). 25. Yerukala, R., Boiroju, N.K., Krishna, M.: Approximations to the t-distribution. Int. J. Stat. Math. 8(1), 19–21 (2013) 26. Zogheib, B., Elsaheli, A.: Approximations to the t-distribution. Appl. Math. Sci. 9, 2445–2449 (2015) 27. Dunbar, S.R.: Topics in probability and stochastic processes: the de Moivre–Laplace central limit theorem. https://www.math. 28. NIST: Runs test for detecting non-randomness. (2013) 29. Bradley, J.V.: Distribution-Free Statistical Tests, 1st edn. PrenticeHall, Englewood Cliffs (1968)