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Abstract

In this work we present a new class of methods which have been devel-
oped in order to numerically solve non-linear second-order in time prob-
lems. These methods are of Rosenbrock type, and can be seen as a gener-
alization of these methods when they are applied to second-order in time
problems which have been previously transformed into first-order in time
problems.

As they follow the ideas of Runge-Kutta-Nyström methods when solv-
ing second-order in time problems, we will call them Rosenbrock-Nyström
methods.

These new methods present less computational cost than implicit Runge-
Kutta-Nyström ones, as the non-linear systems which arises when Runge-
Kutta-Nyström methods are used are replaced with sequences of linear
ones.

In this article we show the development of Rosenbrock-Nyström meth-
ods, as well as the conditions that must be satisfied to get the desired
classical order (up to order four) and the main ideas in order to have sta-
bility. Besides, we will show some numerical experiments that prove the
good behaviour of these new methods.

1 Preliminaries

In this work we are interested in the numerical resolution in time of non-linear
second order in time problems of the form y′′(t) = f(t, y), 0 ≤ t ≤ T <∞,

y(0) = y0,
y′(0) = v0.

(1)

These problems can arise, for example, after the spatial discretization of second-
order in time partial differential equations.
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When we solve a problem of this type we have several options in order to
choose the numerical temporal integrator. One possibility is to choose a method
specially derived to solve second-order in time problems or, in the other hand,
we can previously convert the problem to a first order in time problem and then
we can use a method specially designed to solve this type of problems.

If we choose the first possibility, we can use, for example, Runge-Kutta-
Nyström methods (RKN methods) [?]. When we use this type of methods,
we have to choose whether to use explicit or implicit methods. When we use
explicit methods we can have stability problems, specially if the problem we
are solving is a stiff one. On the other hand, if we choose an implicit method,
we can select a method with an infinite stability interval, but by having a
high computational cost [?]. This computational cost can be very high when
the problem is non-linear or/and multidimensional in space. In order to avoid
the high computational cost that implicit RKN methods present when multidi-
mensional problems in space are solved, Fractional Step Runge-Kutta-Nyström
methods (FSRKN methods) were developed and studied in [?]. The idea of
these methods is to split the spatial operator in a suitable way so that at every
intermediate stage the problem to be solved is simpler in a certain way than
the original one. However, when the problem we are solving is non-linear, the
computational cost can also be very high.

If we prefer to convert the problem to a first order one, then we also have
several options. Runge-Kutta methods (RK methods) or Fractional Step Runge-
Kutta methods (FSRK methods) are a good option if the problem we have is
a linear one but they present a high computational cost when the problem we
are solving is a non-linear one. In this case, a good option is to use Rosenbrock
methods or Exponential-Rosenbrock type methods [?, ?]... The problem we have
when we convert the original problem to a first order one is that the dimension
of the problem is doubled, so the computational cost increases.

In order to avoid all the previous drawbacks when solving a problem like (??),
in this paper we present a new class of methods, which we call Rosenbrock-
Nyström methods. These methods avoid the non-linear systems which arises
when RKN methods are used by replacing them by sequences of linear ones.
Rosenbrock-Nyström methods arise in a natural way as a generalization of
Rosenbrock ones when these are applied to second-order in time equations that
have been previously transformed into first-order in time problems. The meth-
ods presented here differ very much from the ones that appear in [?], that are
of Rosenbrock type and were created to solve second-order nonlinear systems
of ordinary differential equations. We remark here three of the most important
differences between the methods in [?] and our methods. The first one is that to
use the methods presented in [?], we have to define u = (y, v, t)T , with v = y′(t)
and then we have to convert the problem to a first order one in the following
way:

u′ = g(y) =

 v
f(t, y)

1


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u(0) =

 y0
v0
t0

 , (2)

while with our methods we do not need to convert the problem to a first order
one. The second remark is that in [?] we have to solve two linear systems
at each intermediate step, instead of the one linear system we have to solve
at each intermediate step when using the methods presented here. The last
one is that in the mentioned paper, function g(y) and its Jacobian have to be
evaluated at every intermediate stage. When using our method, we evaluate
function f(t, y) at every intermediate stage, but we use fixed values of ft(t, y)
and fy(t, y) at every time step, so the number of function evaluations is smaller
with our method than with the one presented in [?].

This paper has been structured as follows: in the next section we give a
brief description of Rosenbrock-Nyström methods, together with their develop-
ment. In Section ?? we describe the stability requirements that these methods
should satisfy when integrating linear problems. In Section ?? we deal with the
consistency of such methods, and we get the conditions that the coefficients of
the method should satisfy in order to have up to order four. The construction
of such methods is presented in [?]. Finally, in Section ?? we present some
numerical experiments in order to test such methods.

2 Development of Rosenbrock-Nyström meth-
ods

Non-linear second-order in time problems can be written in an abstract form as
follows:

“Find u : [0, T ]→ H solution of u′′(t) = f(t, u(t)), 0 ≤ t ≤ T <∞,
u(0) = u0,
u′(0) = v0, ”

(3)

where, typically, H is a Hilbert space of functions defined in a certain bounded
domain Ω ⊆ RM , integer M ≥ 1 with smooth boundary Γ. This formula-
tion involves lots of different problems: partial differential equations, ordinary
differential equations...

Example 2.1 Let us show here two problems that can be solved by using Rosenbrock-
Nyström methods.

• The first example is the following partial differential equation [?].

utt(t, x) = Au(t, x)− sin(u(t, x)), x ∈ [−50, 50], 0 < t < T,

u(0, x) = 4atan

(√
1− w2

w

cos(wt)

cosh(x
√

1− w2)

)
, ut(0, x) = 0,

u(t,−50) = u(t, 50), ux(t,−50) = ux(t, 50),
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Operator A is such that Au = uxx. This problem can be discretized in
space by taking, for example, a pseudo-espectral discretization uM (t, x) =∑M−1
k=−M ak(t)e2πik

(x+50)
100 , with M a natural number.

• The second problem appears in [?]. This problem will be solved with our
methods in the numerical experiments of Section ??.

u′′j (t) = F (uj+1 − uj)− F (uj − uj−1) + gj(t), j = 1, . . . , N,

uj(0) = sin

(
2πj

N + 1

)
, j = 1, . . . , N,

u′j(t) = 0 j = 1, . . . , N, (4)

with

F (u) = λu+ αup,

u0(t) = uN+1(t) = 0,

gj(t) is such that the exact solution is given by uj(t) = sin
(

2πj
N+1

)
cos(t)

When we solve a problem like (??) with a Rosenbrock-Nyström method, the
numerical approximation to the exact solution and its derivative, (y(tn), v(tn))
is given by (yn, vn), where tn = t0 + nτ , with τ the time-step size. The values
yn and vn) are calculated as

vn+1 = vn + k

s∑
i=1

bif(tn + αik, yn +

i−1∑
j=1

αijKn,j)

+τ2ft(tn, yn)βT · e+ τfy(tn, yn)

s∑
i=1

βiKn,i, (5)

yn+1 = yn +

s∑
i=1

biKn,i,

where Kn,i, i = 1, . . . , s are the intermediate stages and e = (1, . . . , 1)T . These
intermediate stages are given by the following equations

Kn,i = τvn + τ2
i∑

j=1

δijf(tn + αjk, yn +

j−1∑
l=1

αjlKn,l)

+τ2
i∑

j=1

γij(τft(tn, yn) + fy(tn, yn)Kn,j) (6)

Notice that at every intermediate stage, the problem to be solved is a linear one,
so the computational cost is reduced compared with the equations that implicit
RKN methods provide when solving this type of problems. When we select the
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values γii = γ, i = 1, . . . , s, then, at every at every intermediate stage Kn,i we
have to solve a linear problem like

(I − k2γfy(tn, yn))Kn,i = bi

so the computational cost reduces as the system matrix remains constant for all
the intermediate stages.

In what follows, in order to guarantee the solvability of the intermediate
stages, we will assume that, for every t > 0, ∂f

∂y (t, y(t)) is such that (I −
µ∂f∂y (t, y(t)))−1 exists and is bounded for every µ with µ ≥ 0.

When we have that for every t > 0, ∂f
∂y (t, y(t)) is self-adjoint and nega-

tive semi-definite, the solvability and boundedness of the intermediate stages is
guaranteed because of the following:

• In the case of f(t, u(t)) being a space differential operator, ∂f
∂y (t, y(t)) is

the infinitesimal generator of a C0-semigroup of type ω̃ ≤ 0, so (µI −
∂f
∂y (t, y(t)))−1 exists and is bounded for every µ with µ ≥ ω̃ [?].

• In the case of f(t, u(t)) : Rn+1 → Rn being a regular function, then, for
every t > 0 we have that ∂f

∂y (t, y(t)) is a symmetric negative semi-definite

matrix, so (I − µ∂f∂y (t, y(t)))−1 exists for every µ ≥ 0

When the problem we are solving is autonomous, that is, of the form y′′(t) = f(y),
y(0) = y0,
y′(0) = v0,

(7)

the equations which determines the method are

Kn,i = τvn + τ2
i∑

j=1

δijf(yn +

j−1∑
l=1

αjlKn,l) + τ2fy(tn, yn)

i∑
j=1

γijKn,j

vn+1 = vn + k

s∑
i=1

bif(yn +

i−1∑
j=1

αijKn,j) + τfy(tn, yn)

s∑
i=1

βiKn,i, (8)

yn+1 = yn +

s∑
i=1

biKn,i.

Similarly as it happens with other classical methods like RK methods, RKN
methods, Rosenbrock methods..., the coefficients of these methods can be writ-
ten in a tableau as follows:

α Aα Aδ Aγ
βT

bT
=

0 0 δ11 γ11

α2 α21
. . . δ21 δ22 γ21 γ22

...
...

. . .
. . .

...
. . .

. . .
...

. . .
. . .

αs αs1 . . . αss−1 0 δs1 δs2 . . . δss γs1 . . . γss−1 γss

β1 . . . βs

b1 . . . bs

(9)



Rosenbrock type methods for solving non-linear second-order in time problems6

where we will assume that αi =
∑i−1
j=1 αij .

The way of defining these new methods is the natural one since they can be
obtained from Rosenbrock methods applied to problem (??) when it is trans-
formed to a first-order in time problem. Let us remember that the coefficients
of Rosenbrock methods are given by an array of the form

α̃ Ãα γ̃ Ãγ
b̃T

=

α̃1 0 γ̃1 γ̃11

α̃2 α̃21
. . . γ̃2 γ̃21

. . .
...

...
. . .

. . .
...

...
. . .

. . .

α̃s α̃s1 . . . α̃ss−1 0 γ̃s γ̃s1 . . . γ̃ss−1 γ̃ss

b̃1 . . . b̃s

,

and the equations that these methods give when solving a problem like{
y′(t) = f(t, y),
y(0) = y0,

are

Qn,i = τf(tn + α̃iτ, yn +

i−1∑
j=1

α̃ijQn,j) + τ2γ̃ift(tn, yn) + τfy(tn, yn)

i∑
j=1

γ̃ijQn,j

yn+1 = yn +

s∑
j=1

b̃jQn,j ,

where tn = t0 + nτ , with τ the time-step size and yn is the numerical approxi-
mation to y(tn). Qn,i are the intermediate stages.

Then, we write problem (??) as a first order one,

(
y′(t)
v′(t)

)
=

(
v(t)
f(t, y)

)
,

(
y(0)
v(0)

)
=

(
y0
v0

)
.

(10)

When we apply a Rosenbrock method to this problem, the intermediate stages
are given by(
Qyn,i
Qvn,i

)
= τ

(
vn +

∑i−1
j=1 α̃ijQ

v
n,j

f(tn + τα̃i, yn +
∑i−1
j=1 α̃ijQ

y
n,j)

)

+τ2γ̃i

(
0

ft(tn, yn)

)
+ τ

(
0 1

fy(tn, yn) 0

)( ∑i
j=1 γ̃ijQ

y
n,i∑i

j=1 γ̃ijQ
v
n,i

)
and the numerical approximation (yn+1, vn+1)T to the exact solution (y(tn+1), v(tn+1))T

is given by (
yn+1

vn+1

)
=

(
yn
vn

)
+

( ∑s
j=1 b̃jQ

y
n,j∑s

j=1 b̃jQ
v
n,i

)
.
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We operate in the equations that give the intermediate stages, replacing Qvn,j
by its expression in the equations for Qyn,j . From this, we obtain

Qyn,i = kvn + k2
i∑

j=1

(α̃ij + γ̃ij)f(tn + α̃jk, yn +

i−1∑
j=1

α̃ijQ
y
n,j) + k3

i∑
j=1

(α̃ij + γ̃ij)γ̃jft(tn, yn)

+k2
i∑

j=1

(α̃ij + γ̃ij)

j∑
l=1

γ̃ljQ
y
n,l

vn+1 = vn + k

s∑
j=1

b̃jf(tn + α̃jk, yn +

j−1∑
l=1

α̃jlQ
y
n,l)

+k2
s∑
j=1

b̃j γ̃jft(tn, yn) + kfy(tn, yn)

s∑
j=1

b̃j

j∑
l=1

γ̃jl

yn+1 = yn +

s∑
j=1

b̃jQ
y
n,j

Now, lets us assume that the Rosenbrock method satisfies

α̃i =

i−1∑
j=1

α̃ij ,

γ̃i =

i∑
j=1

γ̃ij ,

s∑
j=1

b̃j = 1,

(11)

The first two conditions are usual restrictions satisfied for many Rosenbrock
methods and the third one is the condition to have classical order 1. Then,
what we obtain is precisely equations (??) if we define

α = α̃,

Aα = Ãα
Aγ = (Ãα + Ãγ)Ãγ , (12)

Aδ = Ãα + Ãγ ,
bT = b̃T ,

βT = b̃T Ãγ ,

and if we call Kn,i = Qyn,i, i = 1, . . . , s. Furthermore, we can obtain Rosenbrock-
Nyström methods not coming from Rosenbrock ones, which gives much more
freedom to obtain the coefficients of the desired methods.
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3 Stability when solving linear ordinary differ-
ential equations

In this part we deal with the stability of Rosenbrock-Nyström methods when
they are applied to a problem like

U ′′(t) = −B2U(t),

U(0) = U0, (13)

U ′(0) = V0,

where B is a given symmetric positive defined matrix of order m ≥ 1 and U(t),
f(t), U0 and V0 ∈ Rm.

Here, we study the stability in the energy norm, which is the natural norm
for the study of the well-posedness of problem (??). This norm is given by

‖(U(t), U ′(t))T ‖2B = ‖BU(t)‖22 + ‖U ′(t)‖22,

with ‖ · ‖ the Euclidean norm in Rm.
When solving problem (??) with a Rosenbrock-Nyström method, we obtain[

Un+1

Vn+1

]
=

[
r11(τB) B−1r12(τB)
Br21(τB) r22(τB)

] [
U0

V0

]
, (14)

where terms rij(kB), 1 ≤ i, j ≤ 2 are given by

r11(τB) = I − (bT ⊗ τ2B2)(I ⊗ I + (AδAα +Aγ)⊗ τ2B2)−1(Aδe⊗ I),

r12(τB) = (bT ⊗ τB)(I ⊗ I + (AδAα +Aγ)⊗ τ2B2)−1(e⊗ I)

r21(τB) = −τB[(bT e⊗ I)− ((bTAα + βT )⊗ τ2B2)(I ⊗ I + (AδAα +Aγ)⊗ τ2B2)−1(Aδe⊗ I)],

r22(τB) = I − ((bTAα + βT )⊗ τ2B2)(I ⊗ I + (AδAα +Aγ)⊗ τ2B2)−1(e⊗ I).

These elements form matrix R(τB),

R(τB) =

[
r11(τB) r12(τB)
r21(τB) r22(τB)

]
.

By bounding (??) in the energy norm, we obtain that the proof of stability
is related to the boundedness of the powers of matrix R(τB). As matrix B is
assumed to be symmetric and positive definite, then B is normal and we can
use the following spectral result

‖R(τB)n‖2 ≤ supθ∈σ(τB)‖R(θ)n‖2, (15)

with σ(τB) the spectrum of τB. Then, the boundedness of the powers of matrix
R(τB) is reduced to the study of the boundedness of matrix R(θ). (Note: if we
assume that B is not normal, we can use a similar result to (??), but considering
the numerical range instead of the spectrum [?].)

Following the results in [?], the following definitions and theorem can be
stated. The proof of Theorem ?? is similar to the one given in [?].
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Definition 3.1 The interval C = [0, βstab) is the interval of stability of the
Rosenbrock-Nyström method if βstab ∈ R+ is the highest value such that

C ⊂ {θ ∈ R+ ∪ {0}/ρ(R(θ)) ≤ 1 andR(θ) is simple when ρ(R(θ)) = 1}.

The Rosenbrock-Nyström method is said to be R-stable if C = R+ ∪ {0}.

Definition 3.2 The interval C∗ = [0, βper) is the interval of periodicity of the
Rosenbrock-Nyström if βper ∈ R+ is the highest value such that

C∗ ⊂ {θ ∈ R+ ∪ {0}/R(θ) is simple and for allλ ∈ σ(R(θ)), |λ| = 1 }.

We will say that the Rosenbrock-Nyström method is P -stable if C∗ = R+ ∪ {0}.

Theorem 3.3 Under assumptions

(i) The method is R-stable.

(ii) σ(AδAα +Aγ) ∩ (−∞, 0] = ∅.

(iii) There exists a value θ̄ ∈ R such that R(θ̄) does not have double eigenvalues.

(iv) (bTAα + βT )(AδAα +Aγ)−1(Aδe) = 1

Then,

‖R(kB)n‖2 ≤ C, n ∈ N.

where C is independent of the size of σ(kB).
This result can not be obtained if assumption (iv) is not satisfied.

Corollary 3.4 When the Rosenbrock-Nyström method comes from a Rosen-
brock one with classical order greater or equal than one, condition

(bTAα + βT )(AδAα +Aγ)−1(Aδe) = 1

is always satisfied.

Proof.
Let us assume that the Rosenbrock-Nyström method comes from a Rosen-

brock one with Butcher array

α̃ Ãα γ̃ Ãγ
b̃T

and that the coefficients of the Rosenbrock-Nyström method satisfy relations
(??). Then,

(bTAα + βT )(AδAα +Aγ)−1(Aδe) = (b̃T Ãα + b̃T Ãγ)((Ãα + Ãγ)Ãα + (Ãα + Ãγ)Ãγ)−1(Ãα + Ãγ)e

= b̃T (Ãα + Ãγ)((Ãα + Ãγ)(Ãα + Ãγ))−1(Ãα + Ãγ)e

= b̃T (Ãα + Ãγ)((Ãα + Ãγ)2)−1(Ãα + Ãγ)e

= b̃T e = 1
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4 Order conditions for Rosenbrock-Nyström meth-
ods

Let us see the conditions that Rosenbrock-Nyström methods should satisfy to
obtain the highest possible order when integrating a problem like (??). In
a similar way as with Runge-Kutta-Nyström methods, a Rosenbrock-Nyström
method is said to have classical order p if

ρn+1 = y(tn+1)− ŷn+1 = O(τp+1),

ξn+1 = y′(tn+1)− v̂n+1 = O(τp+1),

where (ŷn+1, v̂n+1)T is the numerical solution obtained from the exact solution
(y(tn), y′(tn))T = (ỹn+1, ṽn+1)T with time step size τ .

In order to study the order conditions, it is useful to write the equations as
in the autonomous case, given by (??), in the following way,

gJn,i = yJn +

i−1∑
j=1

αijK
J
n,j ,

KJ
n,i = τvJn + τ2

i∑
j=1

δijf
J(gj) + τ2

∑
K

fJK(yn)

i∑
j=1

γijK
K
n,j ,

vJn+1 = vJn + τ

s∑
i=1

bif
J(gi) + τ

∑
K

fJK(yn)

s∑
i=1

βiK
K
n,i,

yJn+1 = yJn +

s∑
i=1

biK
J
n,i,

where the superscripts indices in capital letters indicates the component of the
vector we are using (in this part the notation is similar to the one used in [?]).
In the following, ∂fJ/∂yK will be denoted by fJK , ∂2fJ/∂yK∂yL by fJKL and
so on.

To get the order conditions we are going to compare the Taylor series of
ŷn+1 and v̂n+1 obtained from the exact solution (ỹn, ṽn)T with the Taylor series
of the exact solution.

In this part the following formulaes are used:

(τϕ(τ))(q)|τ=0 = qϕ(q−1)(τ)|τ=0, q ≥ 1,

(τ2ϕ(τ))(q)|τ=0 = q(q − 1)ϕ(q−2)(τ)|τ=0, q ≥ 2.

These formulaes are obtained by using that

(τϕ(τ))(q) = qϕ(q−1)(τ) + τϕ(q)(τ), q ≥ 1,

(τ2ϕ(τ))(q) = q(q − 1)ϕ(q−2)(τ) + 2qτϕ(q−1)(τ) + τ2ϕ(q)(τ), q ≥ 2.

These formulaes can be proved in a recursive manner.
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We differentiate by using the notation ϕ(τ) =
∑i
j=1(δijf

J(gj)+γij
∑
K f

J
K(ỹn)KK

n,j)
together with the previous formulaes. Then, we obtain

(KJ
n,i)

(0)|τ=0 = 0,

(KJ
n,i)

(1)|τ=0 = ṽJn |τ=0 +

2τ

i∑
j=1

(δijf
J(gj) + γij

∑
K

fJK(ỹn)KK
n,j)

 |τ=0

+

(τ2
i∑

j=1

(δijf
J(gj) + γij

∑
K

fJK(ỹn)KK
n,j)

(1)

 |τ=0

= ṽJn ,

(KJ
n,i)

(2)|τ=0 = 2

i∑
j=1

(δijf
J(gj) + γij

∑
K

fJK(ỹn)KK
n,j)|τ=0

= 2

i∑
j=1

δijf
J(ỹn)

(KJ
n,i)

(3)|τ=0 = 6

i∑
j=1

(δijf
J(gj)

(1) + γij
∑
K

fJK(ỹn)(KK
n,j)

(1))|τ=0

= 6

i∑
j=1

(δijαj
∑
K

fJK(ỹn)ṽKn + γij
∑
K

fJK(ỹn)ṽKn )

= 6

i∑
j=1

(δijαj + γij)
∑
K

fJK(ỹn)ṽKn ,

(KJ
n,i)

(4)|τ=0 = 12

i∑
j=1

(δij(f
J(gj))

(2) + γij
∑
K

fJK(ỹn)(KK
n,j)

(2))|τ=0

= 12

i∑
j=1

δijα
2
j

∑
K,L

fJKL(ỹn)ṽKn ṽ
L
n + 24

i∑
j=1

i−1∑
l=1

l∑
m=1

δijαjlδlm
∑
K

fJK(ỹn)fK(ỹn)

+24

i∑
j=1

j∑
l=1

γijδjl
∑
K

f jK(ỹn)fK(ỹn),

where we have used that

fJ(gi)|τ=0 = fJ(ỹn),

(fJ(gi))
(1)|τ=0 =

∑
K

αif
J
K(ỹn)ṽKn ,

(fJ(gi))
(2)|τ=0 =

∑
K,L

α2
i f
J
K,L(ỹn)ṽKn ṽ

L
n + 2

∑
K

fJK(ỹn))fK(ỹn)

i−1∑
j=1

j∑
l=1

αijδjl,
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together with

(gKi )(0)|τ=0 = ỹKn ,

(gKi )(1)|τ=0 =

i−1∑
j=1

αij(K
J
n,j)

(1)
τ=0

=

i−1∑
j=1

αij ṽ
J
n

= αiṽ
J
n ,

(gKi )(2)|τ=0 =

i−1∑
j=1

αij(K
J
n,j)

(2)
τ=0

= 2

i−1∑
j=1

j∑
l=1

αijδjlf
J(ỹn),

(gKi )(3)|τ=0 =

i−1∑
j=1

αij(K
J
n,j)

(3)
τ=0

= 6

i−1∑
j=1

j∑
l=1

αij(δjlαl + γjl)
∑
K

fJK(ỹn)ṽKn .

Then, by using the expressions obtained for (KJ
n,i)

(l), l = 1, . . . , 4, we have

(v̂Jn+1)(1)|τ=0 =

s∑
i=1

bif
J(gi)|τ=0 +

∑
K

fJK(ỹn)

s∑
i=1

βi(K
K
n,i)

(0)|τ=0

= fJ(ỹn)

s∑
i=1

bi,

(v̂Jn+1)(2)|τ=0 = 2

s∑
i=1

bi(f
J(gi))

(1)|τ=0 + 2
∑
K

fJK(ỹn)

s∑
i=1

βi(K
K
n,i)

(1)|τ=0

= 2

s∑
i=1

bi
∑
K

fJK(ỹn)αiṽ
K
n + 2

∑
K

fJK(ỹn)

s∑
i=1

βiṽ
K
n

= 2

s∑
i=1

(biαi + βi)
∑
K

fJK(ỹn)ṽKn ,

(v̂Jn+1)(3)|τ=0 = 3

s∑
i=1

bi(f
J(gi))

(2)|τ=0 + 3
∑
K

fJK(ỹn)

s∑
i=1

βi(K
K
i )(2)|τ=0

= 3

s∑
i=1

bi
∑
K,L

fJK,L(ỹn)α2
i ṽ
K
n ṽ

L
n + 6

s∑
i=1

bi
∑
K

fJK(ỹn)fK(ỹn)

i−1∑
j=1

j∑
l=1

αijδjl
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+6
∑
K

fJK(ỹn)

s∑
i=1

i∑
j=1

βiδijf
K(ỹn) (16)

= 3

s∑
i=1

biα
2
i

∑
K,L

fJK,L(ỹn)ṽKn ṽ
L
n + 6

s∑
i=1

∑
K

fJK(ỹn)fK(ỹn)

i−1∑
j=1

j∑
l=1

biαijδjl +

i∑
j=1

βiδij

 ,

(v̂Jn+1)(4)|τ=0 = 4

s∑
i1

bi(f
J(gi))

(3)|τ=0 + 4
∑
K

fJK(ỹn)

s∑
i=1

βi(K
K
n,i)

(3)|τ=0

= 4

s∑
i1

biα
3
i

∑
K,L,M

fJK,L,M (ỹn)ṽKn ṽ
L
n ṽ

M
n

+16
s∑
i=1

biαi

i−1∑
j=1

j∑
l=1

αijδjl
∑
K,L

fJK,L(ỹn)fK(tildeyn)ṽLn

+8

s∑
i=1

biαi

i−1∑
j=1

j∑
l=1

αijδjl
∑
K,L

fJK,L(ỹn)fL(ỹn)ṽKn

+24

s∑
i=1

bi

i−1∑
j=1

j∑
l=1

αij(δjlαl + γjl)
∑
K,L

fJK(ỹn)fKL (ỹn)ṽLn

+24
∑
K

fJK(ỹn)

s∑
i=1

βi

i∑
j=1

(δijαj + γij)
∑
L

fKL (ỹn)ṽLn

= 4

s∑
i1

biα
3
i

∑
K,L,M

fJK,L,M (ỹn)ṽKn ṽ
L
n ṽ

M
n

+16

s∑
i=1

biαi

i−1∑
j=1

j∑
l=1

αijδjl
∑
K,L

fJK,L(ỹn)fK(ỹn)ṽLn

+8

s∑
i=1

biαi

i−1∑
j=1

j∑
l=1

αijδjl
∑
K,L

fJK,L(ỹn)fL(ỹn)ṽKn

+24

s∑
i=1

bi

i−1∑
j=1

j∑
l=1

αij(δjlαl + γjl)
∑
K,L

fJK(ỹn)fKL (ỹn)ṽLn

+24

s∑
i=1

i∑
j=1

βi(δijαj + γij)
∑
K,L

fJK(ỹn)fKL (ỹn)ṽLn

=
∑

K,L,M

fJK,L,M (ỹn)ṽKn ṽ
L
n ṽ

M
n

s∑
i1

4biα
3
i

+
∑
K,L

fJK,L(ỹn)fK(ỹn)ṽLn

s∑
i=1

i−1∑
j=1

j∑
l=1

24biαiαijδjl
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+24
∑
K,L

fJK(ỹn)fKL (ỹn)ṽLn

s∑
i=1

i−1∑
j=1

j∑
l=1

biαij(δjlαl + γjl) +

i∑
j=1

βi(δijαj + γij)


where we have used that

(fJ(gi))
(3) =

∑
K,L,M

fJK,L,M (gi)(g
K
i )(1)(gLi )(1)(gMi )(1) + 2

∑
K,L

fJK,L(gi)(g
K
i )(2)(gLi )(1)

+
∑
K,L

fJK,L(gi)(g
K
i )(1)(gLi )(2) +

∑
K

fJK(gi)(g
K
i )(3)

and therefore

(fJ(gi))
(3)|τ=0 =

∑
K,L,M

fJK,L,M (ỹn)ṽKn ṽ
L
n ṽ

L
nα

3
i + 4

∑
K,L

fJK,L(ỹn)

i−1∑
j=1

j∑
l=1

αiαijδjlf
K(ỹn)ṽLn

+2
∑
K,L

fJK,L(ỹn)

i−1∑
j=1

j∑
l=1

αiαijδjlf
L(ỹn)ṽKn

+6
∑
K,L

fJK(ỹn)

i−1∑
j=1

j∑
l=1

αij(δjlαl + γjl)f
K
L (ỹn)ṽLn .

For (ŷJn+1)(l), l = 1, . . . , 4, we get

(ŷJn+1)(0)|τ=0 = ỹJn ,

(ŷJn+1)(1)|τ=0 =

s∑
i=1

bi(K
J
n,i)

(1)|τ=0

= ṽJn

s∑
i=1

bi,

(ŷJn+1)(2)|τ=0 =

s∑
i=1

bi(K
J
n,i)

(2)|τ=0

= 2

s∑
i=1

bi

i∑
j=1

δijf
J(ỹn)

= 2fJ(ỹn)

s∑
i=1

i∑
j=1

biδij ,

(ŷJn+1)(3)|τ=0 =

s∑
i=1

bi(K
J
n,i)

(3)|τ=0

= 6

s∑
i=1

bi

i∑
j=1

(δijαj + γij)
∑
K

fJK(ỹn)ṽKn

= 6
∑
K

fJK(ỹn)ṽKn

s∑
i=1

i∑
j=1

bi((δijαj + γij), (17)
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(ŷJn+1)(4)|τ=0 =

s∑
i=1

bi(K
J
n,i)

(4)|τ=0

= 12

s∑
i=1

bi

i∑
j=1

δijα
2
j

∑
K,L

fJK,L(ỹn)ṽKn ṽ
L
n

+24

s∑
i=1

bi

i∑
j=1

j−1∑
l=1

l∑
m=1

δijαjlδlm
∑
K

fJK(ỹn)fK(ỹn)

+24

s∑
i=1

bi

i∑
j=1

j∑
l=1

γijδjl
∑
K

fJK(ỹn)fK(ỹn)

= 12
∑
K,L

fJK,L(ỹn)ṽKn ṽ
L
n

s∑
i=1

i∑
j=1

biδijα
2
j

+24
∑
K

fJK(ỹn)fK(ỹn)

s∑
i=1

i∑
j=1

j∑
l=1

bi(γijδjl + δijαjl

l∑
m=1

δlm).

Now, we calculate the derivatives of the exact solution, by taking into ac-
count that y′′(tn) = f(ỹn),

(ỹJn)(1) = ṽJn ,

(ỹJn)(2) = (ṽJn)(1) = fJ(ỹn),

(ỹJn)(3) = (ṽJn)(2) = (fJ(ỹn))(1) =
∑
K

fJK(ỹn)ṽKn , (18)

(ỹJn)(4) = (ṽJn)(3) = (fJ(ỹn))(2)

=
∑
K,L

fJKL(ỹn)ṽKn (ỹLn )(1) +
∑
K

fJK(ỹn)(ṽKn )(1)

=
∑
K,L

fJKL(ỹn)ṽKn ṽ
L
n +

∑
K

fJK(ỹn)fK(ỹn),

(ỹJn)(5) = (ṽJn)(4) = (fJ(ỹn))(3)

=
∑

K,L,M

fJK,L,M (ỹn)ṽKn ṽ
L
n (ỹMn )(1) +

∑
K,L

fJK,L(ỹn)(ṽKn )(1)ṽLn

+
∑
K,L

fJK,L(ỹn)ṽKn (ṽLn )(1) +
∑
K,L

fJK,L(ỹn)(ỹLn )(1)fK(ỹn)

+
∑
K,L

fJK(ỹn)fKL (ỹn)(ỹLn )(1)

=
∑

K,L,M

fJK,L,M (ỹn)ṽKn ṽ
L
n ṽ

M
n +

∑
K,L

fJK,L(ỹn)fK(ỹn)ṽLn

+
∑
K,L

fJK,L(ỹn)ṽKn f
L(ỹn) +

∑
K,L

fJK,L(ỹn)fK(ỹn)ṽLn
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+
∑
K,L

fJK(ỹn)fKL (ỹn)ṽLn

=
∑

K,L,M

fJK,L,M (ỹn)ṽKn ṽ
L
n ṽ

M
n + 3

∑
K,L

fJK,L(ỹn)fK(ỹn)ṽLn

+
∑
K,L

fJK(ỹn)fKL (ỹn)ṽLn

Then, by comparing the results in (??) and (??) with the results in (??),
the order conditions up to order four are:

Order 1: We compare (v̂Jn)(1) with (ṽJn)(1) and (ŷJn)(1) with (ỹJn)(1)

s∑
i=1

bi = 1.

Order 2: We compare (v̂Jn)(2) with (ṽJn)(2) and (ŷJn)(2) with (ỹJn)(2)

s∑
i=1

(biαi + βi) =
1

2
,

s∑
i=1

i∑
j=1

biδij =
1

2
.

Order 3: We compare (v̂Jn)(3) with (ṽJn)(3) and (ŷJn)(3) with (ỹJn)(3)

s∑
i=1

biα
2
i =

1

3
,

s∑
i=1

i−1∑
j=1

j∑
l=1

biαijδjl +

s∑
i=1

i∑
j=1

βiδij =
1

6
,

s∑
i=1

i∑
j=1

bi(δijαj + γij) =
1

6
.

Order 4: We compare (v̂Jn)(4) with (ṽJn)(4) and (ŷJn)(4) with (ỹJn)(4)

s∑
i=1

biα
3
i =

1

4
,

s∑
i=1

i−1∑
j=1

j∑
l=1

biαiαijδjl =
1

8
,

s∑
i=1

i−1∑
j=1

j∑
l=1

biαij(δjlαl + γjl) +

s∑
i=1

i∑
j=1

βi(δijαj + γij) =
1

24
,

s∑
i=1

i∑
j=1

biδijα
2
j =

1

12
,
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s∑
i=1

i∑
j=1

j−1∑
l=1

l∑
m=1

biδijαjlδlm +

s∑
i=1

i∑
j=1

j∑
l=1

biγijδjl =
1

24
.

By using notation αj = (αj1, . . . , α
j
s)
T and (bα)T = (b1α1, . . . , bsαs), these

order conditions can be written as follows:
Order 1:

bT e = 1.

Order 2:

bTα+ βT e =
1

2
, bTAδe =

1

2
.

Order 3:

bTα2 =
1

3
, (bTAα + βT )Aδe =

1

6
, bT (Aδα+Aγe) =

1

6
.

Order 4:

bTα3 =
1

4
, (bα)TAαAδe =

1

8
, (bTAα + βT )(Aδα+Aγ)e =

1

24
,

bTAδα2 =
1

12
, bT (AδAα +Aγ)Aδe =

1

24
.

5 Numerical experiments

This section is devoted to the numerical experiments we have made in order to
prove the advantages of these methods when solving a non-linear equation.

The Rosenbrock-Nyström methods we have chosen is the one that is devel-
oped in [?]. This method is a method with 2 stages and classical order 3. The
coefficients of this method are given by the following array:

0 0 0 2
3

2
3 0√

2√
3

√
2√
3
− 1

3
2
3

−9−2
√
6

9
2
3

−
√
6
6

1
2

1
2

1
2

(19)

We have compared this method with the one given in [?] for the method with
2 stages and classical order four. Although this method has higher order than
our method, we have selected it because of the same number of stages in order
to compare the computational cost. The equations that our two-stage methods
give when solving a problem like (??), with f(t, y(t)) : Rn+1 → R being such
that for every t > 0 and γ > 0, matrix I − γfy(t, y(t)) is invertible. Then, the
equations with time step size τ are given by

(I − τ2γ11fy(tn, yn))Kn,1 = τvn + τ2δ11f(tn, yn) + τ3γ11ft(tn, yn),

(I − τ2γ22fy(tn, yn))Kn,2 = τvn + τ2δ21f(tn, yn) + τ2δ22f(tn + α2τ, yn + α21Kn,1)

+τ2γ21(τft(tn, yn) + fy(tn, yn)Kn,1) + τ3γ22ft(tn, yn),
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and then,

vn+1 = vn + τb1f(tn, yn) + τb2f(tn + α2τ, yn + α21K1) + τ2ft(tn, yn)βT e

+τfy(tn, yn)(β1Kn,1 + β2Kn,2)

yn+1 = yn + b1Kn,1 + b2Kn,2.

In this way, at every step we only have to solve two linear systems
When solving a problem like (??), we have to define u = [y, v, t]T , with

v = y′ and then, we consider the autonomous system given by (??). For a
two-stage method, we define, for γ2 ≥ 0 a real parameter

E ≡ I − γ2h2g2u(u0), , i = 1, 2,

Then, we obtain vectors k1 and k2 by using the following formulaes

Ek1 = g(un) + φ1hgu(un)g(un) + θ1hgu(un)g(un),

Ek2 = g(un + ha21k1) + φ2hgu(un)g(un + he21k1) + θ2hgu(un + hb21k1)g(un + hd21k1) + c21k1

And then, un+1 is given by

un+1 = un + hm1k1 +m2k2

An alternative given in this article is to implement the algorithm as:

• Let L = I − γ2h2fy.

• Determine {pi, qi}, for i = 1, 2 via

Lp1 = vn + η1hf(tn, yn) + γ2h2ft(tn, yn),

Lq1 = f(tn, yn) + η1(fy(tn, yn)vn + ft(tn, yn))

Lp2 = γ2h2(1 + c21)ft(tn, yn) + vn + a21hq1 + φ2hf(tn + e21h, yn + e21hp1)

+θ2hf(tn + d21h, yn + d21hp1) + c21p1,

Lq2 = φ2hfy(tn, yn)(yn + e21hq1) + f(tn + a21h, yn + a21hp1) + φ2hft(tn, yn)

+θ2hfy(tn + b21h, yn + b21hp1)(vn + hd21q1) + θ2hft(tn + b21h, yn + b21hp1) + c21q1,

and then

yn+1 = yn + h(m1p1 +m2p2),

vn+1 = vn + h(m1q1 +m2q2).

We have selected the method that the authors consider in their numerical
experiments. The coefficients of this method are:

d21 = 0, e21 = a21, a21 = −0.7777536224724765,

b21 = 1.117655988539988, c21 = −1.109377052294547, η1 = θ1 = 0.5444631141603234,

φ2 = 0.6622450174040982, θ2 = 0.4462326530351922 γ2 =
3 +
√

7

12
,

m1 = 1.022753184288266, m2 = 0.2080352101413627.
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The first problem we have solved is the equation presented in example ??.
This problem is a modification of the nonlinear wave-propagation suggested in
[?]. Here, we have selected the same parameters that were chosen in [?],

N = 20, λ = 10000, α = 2, p = 3.

The second problem was also studied in [?] and is the equation of motion of
a soliton in an exponential lattice. This problem was firstly proposed in [?] and
it is a highly nonlinear system.

u′′j (t) = 2e−uj − e−uj−1 − e−uj+1 , j = 1, . . . , N

uj(0) = − ln(1 + β2sech2(αj)),

u′j(0) =
2β3sech2(αj)tanh(αj)

1 + β2sech2(αj)
.

with α = 2, β = sinh(α) and N = 20. The solution of this problem is uj(t) =
− ln(1 + β2sech2(αj + βt)).
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