TY - JOUR AU - Ariza Garzón, Miller Janny AU - Arroyo Gallardo, Javier AU - Caparrini López, Antonio AU - Segovia Vargas, María Jesús PY - 2020 DO - 10.1109/access.2020.2984412 SN - 2169-3536 UR - https://hdl.handle.net/20.500.14352/92059 T2 - IEEE Access AB - Peer-to-peer (P2P) lending demands effective and explainable credit risk models. Typical machine learning algorithms offer high prediction performance, but most of them lack explanatory power. However, this deficiency can be solved with the help of... LA - eng M2 - 64873 PB - IEEE KW - Credit risk KW - P2P lending KW - Explainability KW - Shapley values KW - Boosting KW - Logistic regression TI - Explainability of a Machine Learning Granting Scoring Model in Peer-to-Peer Lending TY - journal article VL - 8 ER -