RT Journal Article T1 Water and methanol transport in Nafion membranes with different cationic forms 1. Alkali monovalent cations A1 Godino Gómez, María Paz A1 Barragán García, Vicenta María A1 García Villaluenga, Juan Pedro A1 Ruiz Bauzá, Carlos A1 Seoane Rodríguez, Benjamín AB The mass flux originated when two methanol-water solutions of different methanol concentration are separated by a Nation 117 membrane in acid (H+) and different alkali metal forms (Li+, Na+, K+, Rb+, Cs+) have been measured, as a function of the methanol concentration difference. From the experimental results, the methanol and water permeabilities have been estimated for the different forms of the membrane. The results show that the cationic form of the membrane strongly influences on the methanol and water permeabilities with respect to the values corresponding to its acid form. Moreover, this influence is different for water and methanol depending on the substituted cation. This strong influence of the cationic form of the membrane on the methanol and water permeabilities could be important in relation to the development of new membranes to decrease the methanol crossover in direct methanol fuel cells. PB Elsevier Science BV SN 0378-7753 YR 2006 FD 2006-09-29 LK https://hdl.handle.net/20.500.14352/50546 UL https://hdl.handle.net/20.500.14352/50546 LA eng NO [1] A. Heinzel, V.M. Barragán, J. Power Sources 84 (1999) 70–74.[2] J. Cruickshank, K. Scott, J. Power Sources 70 (1998) 40–47.[3] J. Zhang, Y. Wang, Fuel Cells 4 (2004) 1–2.[4] M. Shen, K. Scott, J. Power Sources 148 (2005) 24–31.[5] V.M. Barragán, A. Heinzel, J. Power Sources 104 (2002) 66–72.[6] J. Kallo, J. Kamera, W. Lehnert, R. Von Helmolt, J. Power Sources 127 (2004) 181–186.[7] V. Gogel, T. Frey, Z. Yonsgsheng, K.A. Friedrich, L. JÖrinsen, J. Garche, J. Power Sources 127 (2004) 172–180.[8] H.L.Tang, M. Pan, S.P. Jiang, R.Z.Yuan, Mater. Lett. 59 (2005) 3766–3770.[9] P. Dimitrova, K.A. Friedrich, U. Stimming, B. Vogt, Solid State Ionics 150 (2002) 115–122.[10] W.C. Choi, J.D. Kim, S.I. Woo, J. Power Sources 96 (2001) 411– 414.[11] H. Lin, T.L. Yu, L. Huang, L. Chen, K. Shen, G. Jung, J. Power Sources 150 (2005) 11–19.[12] V. Tricoli, J. Electrochem. Soc. 145 (1998) 3798–3801.[13] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, J. Power Sources 130 (2004) 22–29.[14] G. Suresh, X.M. Scindia, A.K. Pandey, A. Goswami, J. Membr. Sci. 250 (2005) 39–45.[15] N.H. Jalani, R. Datta, J. Membr. Sci. 264 (2005) 167–175.[16] D. Nandan, H. Mohan, R.M. Iyer, J. Membr. Sci. 71 (1992) 69–80.[17] L.G. Lage, P.G. Delgado, Y. Kawano, Eur. Polym. J. 40 (2004) 1309–1316.[18] T. Okada, H. Satou, M. Okuno, M. Yuasa, J. Phys. Chem. B 106 (2002) 1267–1273.[19] A. Goswami, A. Acharya, A.K. Pandey, J. Phys. Chem. B 105 (2001) 9196–9201.[20] M. Legras, Y. Hirata, Q.T. Nguyen, D. Langevin, M.Métayer, Desalination 147 (2002) 351–357.[21] M. Kameche, C. Innocent, F. Xu, G. Pourcelly, Z. Derriche, Desalination 168 (2004) 319–327.[22] S. Koter, P. Piotrowski, J. Kerres, J. Membr. Sci. 153 (1999) 83–90.[23] J.P.G. Villaluenga, B. Seoane, V.M. Barragán, C. Ruiz-Bauzá, J. Membr. Sci. 274 (2006) 116–122.[24] J. D’Ans, H. Surawsky, C. Synowietz, Densities of liquid systems and their capacities, in: Numerical Data and Functional Relationships in Science and Technology. Group V. Macroscopic and Technical Properties of Matter, vol. 1, Springer, New York, 1977.[25] H.A. Every, M.A. Hickner, J.E. McGrath, T.A. Zawodzinski, J. Membr. Sci. 250 (2005) 183–188.[26] P.S. Kauranen, E. Skou, J. Appl. Electrochem. 26 (1996) 909–917. NO © 2006 Elsevier B.V. Financial support from the University Complutense ofMadrid under Project 052PR13273 is gratefully acknowledged. NO University Complutense of Madrid DS Docta Complutense RD 3 may 2024