TY - JOUR AU - Bouakaze, Caroline AU - Delehelle, Franklin AU - Saenz-Oyhéréguy, Nancy AU - Moreira, Andreia AU - Schiavinato, Stéphanie AU - Croze, Myriam AU - Delon, Solène AU - Fortes-Lima, César AU - Gibert, Morgane AU - Bujan, Louis AU - Huyghe, Eric AU - Bellis, Gil AU - Calderón Fernández, María Del Rosario AU - Hernández, Candela AU - Avendaño-Tamayo, Efren AU - Bedoya, Gabriel AU - Salas, Antonio AU - Mazières, Stéphane AU - Chiaroni, Jacques AU - Migot-Nabias, Florence AU - Ruiz-Linares, Andres AU - Dugoujon, Jean-Michel AU - Théves, Catherine AU - Mollereau-Manaute, Catherine AU - Nôus, Camille AU - Poulet, Nicolas AU - King, Turi AU - D'Amato, Maria Eugenia AU - Balaresque, Patricia PY - 2020 DO - 10.1016/j.fsigen.2020.102342 SN - 1872-4973 UR - https://hdl.handle.net/20.500.14352/98074 T2 - Forensic Science International: Genetics AB - We developed a new mutationally well-balanced 32 Y-STR multiplex (CombYplex) together with a machine learning (ML) program PredYMaLe to assess the impact of STR mutability on haplogourp prediction, while respecting forensic community criteria (high... LA - eng M2 - 102342 PB - Science Direct KW - Y-STR KW - Machine learning KW - Assignation accuracy and haplogroup prediction (Hg prediction) KW - Incremental mutation rates TI - Predicting haplogroups using a versatile machine learning program (PredYMaLe) on a new mutationally balanced 32 Y-STR multiplex (CombYplex): unlocking the full potential of the human STR mutation rate spectrum to estimate forensic parameters TY - journal article VL - 48 ER -