%0 Journal Article %A Cobos Díaz, Fernando %A Kühn, Thomas %A Sickel, Winfried %T On optimal approximation in periodic Besov spaces %D 2019 %@ 0022-247X %U https://hdl.handle.net/20.500.14352/13083 %X We work with spaces of periodic functions on the d-dimensional torus. We show that estimates for L∞-approximation of Sobolev functions remain valid when we replace L1 by the isotropic periodic Besov space B01;1 or the periodic Besovspace with dominating mixed smoothness S01;1B. For t > 1=2, we also prove estimates for L2-approximation of functions in the Besov space of dominating mixed smoothness St 1;1B, describing exactly the dependence of the involved constants on the dimension d and the smoothness t. %~