RT Journal Article T1 Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning Approach A1 Urman, Jesús M. A1 Herranz, José M. A1 Uriarte, Iker A1 Rullán, María A1 Oyón, Daniel A1 González, Belén A1 Fernandez-Urién, Ignacio A1 Carrascosa, Juan A1 Bolado, Federico A1 Zabalza, Lucía A1 Arechederra, María A1 Alvarez-Sola, Gloria A1 Colyn, Leticia A1 Latasa, María U. A1 Puchades-Carrasco, Leonor A1 Pineda-Lucena, Antonio A1 Iraburu, María J. A1 Iruarrizaga-Lejarreta, Marta A1 Alonso, Cristina A1 Sangro, Bruno A1 Purroy, Ana A1 Gil, Isabel A1 Carmona, Lorena A1 Cubero Palero, Francisco Javier A1 Martínez-Chantar, María L. A1 Banales, Jesús M. A1 Romero, Marta R. A1 Macias, Rocio I.R. A1 Monte, Maria J. A1 Marín, Jose J. G. A1 Vila, Juan J. A1 Corrales, Fernando J. A1 Berasain, Carmen A1 Fernández-Barrena, Maite G. A1 Avila, Matías A. AB Cholangiocarcinoma (CCA) and pancreatic adenocarcinoma (PDAC) may lead to the development of extrahepatic obstructive cholestasis. However, biliary stenoses can also be caused by benign conditions, and the identification of their etiology still remains a clinical challenge. We performed metabolomic and proteomic analyses of bile from patients with benign (n = 36) and malignant conditions, CCA (n = 36) or PDAC (n = 57), undergoing endoscopic retrograde cholangiopancreatography with the aim of characterizing bile composition in biliopancreatic disease and identifying biomarkers for the differential diagnosis of biliary strictures. Comprehensive analyses of lipids, bile acids and small molecules were carried out using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (1H-NMR) in all patients. MS analysis of bile proteome was performed in five patients per group. We implemented artificial intelligence tools for the selection of biomarkers and algorithms with predictive capacity. Our machine-learning pipeline included the generation of synthetic data with properties of real data, the selection of potential biomarkers (metabolites or proteins) and their analysis with neural networks (NN). Selected biomarkers were then validated with real data. We identified panels of lipids (n = 10) and proteins (n = 5) that when analyzed with NN algorithms discriminated between patients with and without cancer with an unprecedented accuracy. PB MDPI SN 2072-6694 YR 2020 FD 2020-06-21 LK https://hdl.handle.net/20.500.14352/8342 UL https://hdl.handle.net/20.500.14352/8342 LA eng NO Union Europea. Horizonte 2020 NO Ministerio de Economía y Competitividad (MINECO)/FEDER NO Ministerio de Ciencia e Innovación (MICCIN) NO Comunidad de Madrid NO Instituto de Salud Carlos III (ISCIII) / FEDER NO Centro de Excelencia Severo Ochoa NO Fundación Científica de la Asociación Española Contra el Cáncer (AECC Scientific Foundation) NO Gobierno de Navarra Salud NO Fundación La Caixa DS Docta Complutense RD 10 abr 2025