RT Journal Article T1 Ultrasound-triggered local anaesthesia A1 Rwei, Alina Y. A1 Paris, J.L. A1 Wang, Bruce A1 Axon, Christopher D. A1 Vallet Regí, María Dulce Nombre A1 Langer, Robert A1 Kohane, Daniel S. A1 Weiping, Wang AB On-demand relief of local pain would allow patients to control the timing, intensity and duration of nerve blocks in a safe and non-invasive manner. Ultrasound would be a suitable trigger for such a system, as it is in common clinical use and can penetrate deeply into the body. Here, we demonstrate that ultrasound-triggered delivery of an anaesthetic from liposomes allows the timing, intensity and duration of nerve blocks to be controlled by ultrasound parameters. On insonation, the encapsulated sonosensitizer protoporphyrin IX produced reactive oxygen species that reacted with the liposomal membrane, leading to the release of the potent local anaesthetic tetrodotoxin. Repeatable ultrasound-triggered nerve blocks were achieved in vivo, with the nerve-block duration depending on the extent and intensity of insonation. There was no detectable systemic toxicity and tissue reaction was benign in all groups. On-demand, personalized local anaesthesia could be beneficial for the management of relatively localized pain states and could potentially minimize opioid use. PB Nature Biomedical Engineering SN 2157-846X YR 2017 FD 2017-08-09 LK https://hdl.handle.net/20.500.14352/18180 UL https://hdl.handle.net/20.500.14352/18180 LA eng NO 1. Epstein-Barash, H. et al. Prolonged duration local anesthesia with minimaltoxicity. Proc. Natl Acad. Sci. USA 106, 7125–7130 (2009).2. McAlvin, J. B. & Kohane, D. S. in Focal Controlled Drug Delivery (eds. Domb,A. J. & Khan, W.) 653–677 (Springer US, New York, USA, 2014).3. Rwei, A. Y. et al. Repeatable and adjustable on-demand sciatic nerve blockwith phototriggerable liposomes. Proc. Natl Acad. Sci. USA 112,15719–15724 (2015).4. Zhan, C. et al. Phototriggered local anesthesia. Nano Lett. 16, 177–181(2016).5. Stolik, S., Delgado, J. A., Pérez, A. & Anasagasti, L. Measurement of thepenetration depths of red and near infrared light in human “ex vivo” tissues.J. Photochem. Photobiol. B 57, 90–93 (2000).6. Rwei, A. Y., Wang, W. & Kohane, D. S. Photoresponsive nanoparticles fordrug delivery. Nano Today 10, 451–467 (2015).7. Smalley, P. J. Laser safety: risks, hazards, and control measures. Laser Ther.20, 95–106 (2011).8. Wood, A. K. & Sehgal, C. M. A review of low-intensity ultrasound for cancertherapy. Ultrasound Med. Biol. 41, 905–928 (2015).9. Sirsi, S. R. & Borden, M. A. State-of-the-art materials for ultrasoundtriggereddrug delivery. Adv. Drug Deliv. Rev. 72, 3–14 (2014).10. Marhofer, P. & Chan, V. W. S. Ultrasound-guided regional anesthesia: currentconcepts and future trends. Anesth. Analg. 104, 1265–1269 (2007).11. Abrahams, M. S., Aziz, M. F., Fu, R. F. & Horn, J. L. Ultrasound guidancecompared with electrical neurostimulation for peripheral nerve block: a systematic review and meta-analysis of randomized controlled trials. Br. J. Anaesth. 102,408–417 (2009).12. Li, F., Xie, C., Cheng, Z. & Xia, H. Ultrasound responsive block copolymermicelle of poly (ethylene glycol)–poly (propylene glycol) obtained throughclick reaction. Ultrason. Sonochem. 30, 9–17 (2016).13. Lin, C.-Y., Javadi, M., Belnap, D. M., Barrow, J. R. & Pitt, W. G. Ultrasoundsensitive eLiposomes containing doxorubicin for drug targeting therapy.Nanomedicine 10, 67–76 (2014).14. Kim, H. J., Matsuda, H., Zhou, H. & Honma, I. Ultrasound‐triggered smartdrug release from a poly (dimethylsiloxane)–mesoporous silica composite.Adv. Mater. 18, 3083–3088 (2006).15. Paris, J. L., Cabañas, M. V., Manzano, M. & Vallet-Regí, M. Polymer-graftedmesoporous silica nanoparticles as ultrasound-responsive drug carriers.ACS Nano 9, 11023–11033 (2015).16. Cintas, P., Tagliapietra, S., Caporaso, M., Tabasso, S. & Cravotto, G. Enablingtechnologies built on a sonochemical platform: challenges and opportunities.Ultrason. Sonochem. 25, 8–16 (2015).17. Shi, J. et al. Reactive oxygen species—manipulated drug release from a smartenvelope-type mesoporous titanium nanovehicle for tumor sonodynamicchemotherapy.ACS Appl. Mater. Interfaces 7, 28554–28565 (2015).18. Kuroki, M. et al. Sonodynamic therapy of cancer using novel sonosensitizers.Anticancer Res. 27, 3673–3677 (2007).19. Kennedy, J. C. & Pottier, R. H. Endogenous protoporphyrin IX, a clinicallyuseful photosensitizer for photodynamic therapy. J. Photochem. Photobiol. B14, 275–292 (1992).20. Jeffes, E. W. B. Levulan®: the first approved topical photosensitizer for thetreatment of actinic keratosis. J. Dermatol. Treat. 13, S19–S23 (2002).21. Padera, R. F., Tse, J. Y., Bellas, E. & Kohane, D. S. Tetrodotoxin for prolongedlocal anesthesia with minimal myotoxicity. Muscle Nerve 34, 747–753 (2006).22. Sakura, S., Bollen, A. W., Ciriales, R. & Drasner, K. Local anestheticneurotoxicity does not result from blockade of voltage-gated sodiumchannels. Anesth. Analg. 81, 338–346 (1995).23. Hagen, N. A. et al. Tetrodotoxin for moderate to severe cancer-related pain: amulticentre, randomized, double-blind, placebo-controlled, parallel-designtrial. Pain Res. Manag. 2017, 7212713 (2017).24. Hagen, N. A. et al. A multicentre open-label safety and efficacy study oftetrodotoxin for cancer pain. Curr. Oncol. 18, E109–E116 (2011).25. Carter, K. A. et al. Porphyrin–phospholipid liposomes permeabilized bynear-infrared light. Nat. Commun. 5, 3546 (2014).26. Ericson, M. B., Wennberg, A.-M. & Larkö, O. Review of photodynamictherapy in actinic keratosis and basal cell carcinoma. Ther. Clin. Risk Manag.4, 1–9 (2008).27. Kohane, D. S. et al. The local anesthetic properties and toxicity of saxitoninhomologues for rat sciatic nerve block in vivo. Reg. Anesth. Pain Med. 25,52–59 (2000).28. Kohane, D. S. et al. A re-examination of tetrodotoxin for prolonged durationlocal anesthesia. Anesthesiology 89, 119–131 (1998).29. McAlvin, J. B. et al. Corneal anesthesia with site 1 sodium channel blockersand dexmedetomidine. Invest. Ophthalmol. Vis. Sci. 56, 3820–3826 (2015).30. Kohane, D. S. et al. Biocompatibility of lipid-protein-sugar particles containingbupivacaine in the epineurium. J. Biomed. Mater. Res. 59, 450–459 (2002).31. Marhofer, P., Harrop-Griffiths, W., Willschke, H. & Kirchmair, L. Fifteen yearsof ultrasound guidance in regional anaesthesia: part 2-recent developments inblock techniques. Br. J. Anaesth 104, 673–683 (2010).32. Hayes, B. T., Merrick, M. A., Sandrey, M. A. & Cordova, M. L. Three-MHzultrasound heats deeper into the tissues than originally theorized. J. Athl.Train. 39, 230–234 (2004).33. Rosenthal, I., Sostaric, J. Z. & Riesz, P. Sonodynamic therapy—a review of thesynergistic effects of drugs and ultrasound. Ultrason. Sonochem. 11, 349–363(2004).34. Mišík, V. & Riesz, P. Free radical intermediates in sonodynamic therapy. Ann.NY Acad. Sci. 899, 335–348 (2000).35. Leighton, T. G., Pickworth, M. J. W., Walton, A. J. & Dendy, P. P. Studies ofthe cavitational effects of clinical ultrasound by sonoluminescence: 1.Correlation of sonoluminescence with the standing wave pattern in anacoustic field produced by a therapeutic unit. Phys. Med. Biol. 33,1239 (1988).36. Pong, M. et al. In vitro ultrasound-mediated leakage from phospholipidvesicles. Ultrasonics 45, 133–145 (2006).37. Schroeder, A., Kost, J. & Barenholz, Y. Ultrasound, liposomes, and drugdelivery: principles for using ultrasound to control the release of drugs fromliposomes. Chem. Phys. Lipids 162, 1–16 (2009).38. Lin, H.-Y. & Thomas, J. L. Factors affecting responsivity of unilamellarliposomes to 20 kHz ultrasound. Langmuir 20, 6100–6106 (2004).39. Voszka, I. et al. Interaction of photosensitizers with liposomes containingunsaturated lipid. Chem. Phys. Lipids 145, 63–71 (2007).40. Lyubimtsev, A. et al. Aggregation behavior and UV-vis spectra of tetra-andoctaglycosylated zinc phthalocyanines. J. Porphyr. Phthalocyanines 15,39–46 (2011).41. Rokitskaya, T. I., Block, M., Antonenko, Y. N., Kotova, E. A. & Pohl, P.Photosensitizer binding to lipid bilayers as a precondition for thephotoinactivation of membrane channels. Biophys. J. 78, 2572–2580 (2000).42. Adams, H. J., Blair, M. R. J. & Takman, B. H. The local anesthetic activity oftetrodotoxin alone and in combination with vasoconstrictors and localanesthetics. Anesth. Analg. 55, 568–573 (1976).43. Lobo, K. et al. A phase 1, dose-escalation, double-blind, block-randomized,controlled trial of safety and efficacy of neosaxitoxin alone and incombination with 0.2% bupivacaine, with and without epinephrine, forcutaneous anesthesia. Anesthesiology 123, 873–885 (2015).44. Kohane, D. S. Microparticles and nanoparticles for drug delivery. Biotechnol.Bioeng. 96, 203–209 (2007).45. Naor, O., Krupa, S. & Shy, S. Ultrasonic neuromodulation. J. Neural Eng. 13,031003 (2016).46. Brummett, C. M., Hong, E. K., Janda, A. M., Amodeo, F. S. & Lydic, R.Perineural dexmedetomidine added to ropivacaine for sciatic nerve block inrats prolongs the duration of analgesia by blocking the hyperpolarizationactivatedcation current. Anesthesiology 115, 836–843 (2011).47. Yoshitomi, T. et al. Dexmedetomidine enhances the local anesthetic action oflidocaine via an α -2A adrenoceptor. Anesth. Analg. 107, 96–101 (2008).48. Yabuki, A. et al. Locally injected dexmedetomidine induces vasoconstrictionvia peripheral α -2A adrenoceptor subtype in guinea pigs. Reg. Anesth. PainMed. 39, 133–136 (2014).49. Curley, J. et al. Prolonged regional nerve blockade. Injectable biodegradablebupivacaine/polyester microspheres. Anesthesiology 84, 1401–1410 (1996).50. Kohane, D. S., Lipp, M., Kinney, R. C., Lotan, N. & Langer, R. Sciatic nerveblockade with lipid-protein-sugar particles containing bupivacaine. Pharm.Res. 17, 1243–1249 (2000).51. Castillo, J. et al. Glucocorticoids prolong rat sciatic nerve blockade in vivofrom bupivacaine microspheres. Anesthesiology 85, 1157–1166 (1996).52. Kohane, D. S. et al. Prolonged duration local anesthesia from tetrodotoxinenhancedlocal anesthetic microspheres. Pain 104, 415–421 (2003).53. Lago, J., Rodriguez, L. P., Blanco, L., Vieites, J. M. & Cabado, A. G.Tetrodotoxin, an extremely potent marine neurotoxin: distribution, toxicity,origin and therapeutical uses. Mar. Drugs 13, 6384–6406 (2015).54. Kohane, D. S., Lu, N. T., Cairns, B. E. & Berde, C. B. Effects of adrenergicagonists and antagonists on tetrodotoxin-induced nerve block. Reg. Anesth.Pain Med. 26, 239–245 (2001).55. Richard, B. M. et al. The safety of EXPAREL® (bupivacaine liposomeinjectable suspension) administered by peripheral nerve block in rabbits anddogs. J. Drug Deliv. 2012, 962101 (2012).56. Vanrooijen, N. & Vannieuwmegen, R. Liposomes in immunology—multilamllar phosphatidylcholine liposomes as a simple, biodegradable andharmless adjuvant without any immunogenic activity of its own. Immunol.Commun. 9, 243–256 (1980).57. Rosenberg, G. J. & Cabrera, R. C. External ultrasonic lipoplasty: an effectivemethod of fat removal and skin shrinkage. Plast. Reconstr. Surg. 105,785–791 (2000).58. Pudroma, X., Moan, J., Ma, L.-W., Iani, V. & Juzeniene, A. A comparison of5-aminolaevulinic acid- and its heptyl ester: dark cytotoxicity andprotoporphyrin IX synthesis in human adenocarcinoma WiDr cells and inathymic nude mice healthy skin. Exp. Dermatol. 18, 985–987 (2009).59. Roots, R. & Okada, S. Estimation of life times and diffusion distances ofradicals involved in X-ray-induced DNA strand breaks or killing ofmammalian-cells. Radiat. Res. 64, 306–320 (1975).60. Pryor, W. A. Oxyradicals and related species—their formation, lifetimes, andreactions. Annu. Rev. Physiol. 48, 657–667 (1986).61. Skovsen, E., Snyder, J. W., Lambert, J. D. C. & Ogilby, P. R. Lifetime anddiffusion of singlet oxygen in a cell. J. Phys. Chem. B 109,8570–8573 (2005).62. Kohane, D. S. et al. Sciatic nerve blockade in infant, adolescent, and adultrats: a comparison of ropivacaine with bupivacaine. Anesthesiology 89,1199–1208 (1998).63. Rodriguez-Navarro, A. J. et al. Potentiation of local anesthetic activity ofneosaxitoxin with bupivacaine or epinephrine: development of a long-actingpain blocker. Neurotox. Res. 16, 408–415 (2009).64. Rodríguez-Navarro, A. J. et al. Comparison of neosaxitoxin versusbupivacaine via port infiltration for postoperative analgesia followinglaparoscopic cholecystectomy: a randomized, double-blind trial. Reg. Anesth.Pain Med. 36, 103–109 (2011).65. Alkan-Onyuksel, H. et al. Development of inherently echogenic liposomes asan ultrasonic contrast agent. J. Pharm. Sci. 85, 486–490 (1996).66. Shung, K. K. High frequency ultrasonic imaging. J. Med. Ultrasound 17,25–30 (2009).67. Jaafar-Maalej, C., Diab, R., Andrieu, V., Elaissari, A. & Fessi, H. Ethanolinjection method for hydrophilic and lipophilic drug-loaded liposomepreparation. J. Liposome Res. 20, 228–243 (2010).68. Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction andpurification. Can. J. Biochem. Physiol. 37, 911–917 (1959).69. Da Costa, M. M. J. et al. A new zebrafish model produced by TILLING ofSOD1-related amyotrophic lateral sclerosis replicates key features of thedisease and represents a tool for in vivo therapeutic screening. Dis. Model.Mech. 7, 73–81 (2014).70. Wu, D. & Yotnda, P. Production and detection of reactive oxygen species(ROS) in cancers. J. Vis. Exp. 3357 (2011).71. Jiang, Z.-Y., Woollard, A. C. & Wolff, S. P. Lipid hydroperoxide measurementby oxidation of Fe2+ in the presence of xylenol orange. Comparison with theTBA assay and an iodometric method. Lipids 26, 853–856 (1991).72. Rouhi, N., Jain, D., Zand, K. & Burke, P. J. Carbon nanotube field effecttransistors using printed semiconducting tubes. Nanotechnology 1,180–182 (2010).73. Liang, X., Mao, G. & Ng, K. Y. S. Mechanical properties and stabilitymeasurement of cholesterol-containing liposome on mica by atomic forcemicroscopy. J. Colloid Interface Sci. 278, 53–62 (2004).74. Zimmermann, M. Ethical guidelines for investigations of experimental painin conscious animals. Pain 16, 109–110 (1983).75. Rwei, A. Y., Zhan, C., Wang, B. & Kohane, D. S. Multiply repeatable andadjustable on-demand phototriggered local anesthesia. J. Control. Release 251,68–74 (2017).76. Thalhammer, J., Vladimirova, M., Bershadsky, B. & Strichartz, G. Neurologicevaluation of the rat during sciatic nerve block with lidocaine. Anesthesiology82, 1013–1025 (1995).77. McAlvin, J. B. et al. Multivesicular liposomal bupivacaine at the sciatic nerve.Biomaterials 35, 4557–4564 (2014). NO Ministerio de Economía y Competitividad (MINECO) NO National Institutes of Health grant DS Docta Complutense RD 27 abr 2024