RT Journal Article
T1 Dynamics of deviations from the Gaussian state in a freely cooling homogeneous system of smooth inelastic particles
A1 Huthmann, M.
A1 García Orza, José Antonio
A1 Brito, Ricardo
AB The time dependence of deviations from the Gaussian state in a freely cooling homogeneous system of smooth inelastically colliding spheres is investigated by kinetic theory. We determine the full time dependence of the coefficients of an expansion around the Gaussian state in Generalized Laguerre polynomials. Approximating this system of equations to sixth order, we find that the asymptotic state, where the mean energy T follows Haff's law with time independent cooling rate, is reached within a few collisions per particle. Two-dimensional molecular dynamics stimulations confirm our results and show exponential behavior in the high-energy tails.
PB Springer-Verlag
SN 1434-5021
YR 2000
FD 2000-10
LK https://hdl.handle.net/20.500.14352/58489
UL https://hdl.handle.net/20.500.14352/58489
LA eng
NO 1. I. Goldhirsch & G. Zanetti, Clustering instability in dissipative gases. Phys. Rev. Lett. 70 (1993), p. 16192. I. Goldhirsch, M.-L. Tan & G. Zanetti, Molecular dynamical study of granular fluids I: the unforced granular gas in two dimensions. J. Sci. Comput. 8 (1993), p. 13. P. Deltour & J. L. Barrat, Quantitative study of a freely cooling granular medium. J. Phys. I France 7 (1997), p. 1374. S. E. Esipov & T. Pöschel, The granular phase diagram. J. Stat. Phys. 86 (1997), p. 13855. S. McNamara & W. R. Young, Dynamics of a freely evolving, two-dimensional granular medium. Phys. Rev. E 53 (1996), p. 50896. T. P. C. van Noije, M. H. Ernst, R. Brito & J. A. G. Orza, Mesoscopic theory of granular fluids. Phys. Rev. Lett. 79 (1997), p. 4117. J. A. G. Orza, R. Brito, T. P. C. van Noije & M. H. Ernst, Patterns and long range correlations in idealized granular flows. Int. J. Mod. Phys. C 8 (1997), p. 9538. T. P. C. van Noije, M. H. Ernst & R. Brito, Spatial correlations in compressible granular flows. Phys. Rev. E 57 (1998), R4891. T. P. C. van Noije & M. H. Ernst, Cahn- Hilliard theory for unstable granular fluids. Phys. Rev. E 61 (2000), p. 17659. A. Goldshtein & M. Shapiro, Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid Mech. 282 (1995), p. 7510. T. P. C. van Noije & M. H. Ernst, Velocity distributions in homogeneously cooling and heated granular fluids. Gran. Matt. 1 (1998), p. 5711. N. V. Brilliantov & T. Pöschel, Deviation from Maxwell distribution in granular gases with constant restitution coefficient. Phys. Rev. E 61 (2000), p. 280912. J. J. Brey, M. J. Ruiz-Montero & D. Cubero, Homogeneous cooling state of a low-density granular flow. Phys. Rev. E 54 (1996), p. 366413. N. V. Brilliantov & T. Pöschel, Velocity distribution in granular gases of viscoelastic particles. cond-mat Phys Rev E, 61, 2000, p. 557314. J. J. Brey, D. Cubero & M. J. Ruiz-Montero, High energy tail in the velocity distribution of a granular gas. Phys. Rev. E 59 (1999), p. 125615. W. Losert, D. G. W. Cooper, J. Deltour, A. Kudrolli & J. P. Gollub, Velocity statistics in excited granular media. Chaos, 9, 1999, p. 68216. J. M. Montanero & A. Santos, Computer simulation of uniformly heated granular fluids, to be published in Granular Matter, cond-mat/0002323, (2000)17. W. Magnus, F. Oberhettinger & R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, 196618. S. Chapman & T. G. Cowling, The Mathematical Theory of Nonuniform Gases. Cambridge University Press, London, (1960)19. P. K. Haff, Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134 (1983), p. 40120. M. P. Allen & D. J. Tildesley, Computer Simulation of Liquids. Clarendon Press, Oxford, (1989)21. B. D. Lubachevsky, How to simulate billards and similar systems. J. Comp. Phys. 94 (1991), p. 25522. R. Brito & M. H. Ernst, Extension of Haff’s cooling law in granular flows. Europhys. Lett. 43 (1998), p. 49723. S. Luding, M. Müller & S. McNamara, The validity of “molecular chaos” in granular flows. In World Congress on Particle Technology (Inst. of Chem. Eng., Davis Building, 165-189 Railway Terrace, Rugby CV21 3HQ, UK) (1998), ISBN 0-85295-401-924. J. A. G. Orza & R. Brito, (in preparation)25. S. G. Eubank & J. D. Farmer, Introduction to nonlinear physics. Springer, New York, (1997), p. 106–15126. S. Luding, M. Huthmann, S. McNamara & A. Zippelius, Homogeneous cooling of rough dissipative particles: theory and simulations. Phys. Rev. E 58 (1998), p. 341627. T. Aspelmeier, M. Huthmann & A. Zippelius, Free cooling of particles with rotational degrees of freedom, to be published in Granular Matter, Lecture Notes in Physics. Eds.: T . Pöschel and S. Luding, Springer-Verlag, (2000)28. O. Herbst, M. Huthmann, & A. Zippelius, Dynamics of inelastically colliding spheres with Coulomb friction: relaxation of translational and rotational energy, to be published in Granular Matter, cond-mat/9911306, (2000)
NO © Springer-Verlag 2000. The authors thank to A. Zippelius, T. Aspelmeier, P. Müller,and A. Santos for useful discussions. M. H. acknowledgesfinancial support by the DFG through SFB 345 (Germany), and J. A. G. O. and R. B. from DGES number PB97-0076 (Spain)
NO DFG (Germany)
NO DGES (Spain)
DS Docta Complutense
RD 11 dic 2023