RT Journal Article T1 A coloring fuzzy graph approach for image classification. A1 Gomez, D. A1 Montero, Javier A1 Yáñez, Javier AB One of the main problems in practice is the difficulty in dealing with membership functions. Many decision makers ask for a graphical representation to help them to visualize results. In this paper, we point out that some useful tools for fuzzy classification can be derived from fuzzy coloring procedures. In particular, we bring here a crisp grey coloring algorithm based upon a sequential application of a basic black and white binary coloring procedure, already introduced in a previous paper [D. Gomez, J. Montero,J. Yañez, C. Poidomani, A graph coloring algorithm approach for image segmentation, Omega, in press]. In this article, the image is conceived as a fuzzy graph definedon the set of pixels where fuzzy edges represent the distance between pixels. In this way,we can obtain a more flexible hierarchical structure of colors, which in turn should give useful hints about those classes with unclear boundaries. PB Elsevier Science Inc SN 0020-0255 YR 2006 FD 2006 LK https://hdl.handle.net/20.500.14352/50136 UL https://hdl.handle.net/20.500.14352/50136 LA eng NO A. Amo, D. Gomez, J. Montero, G. Biging, Relevance and redundancy in fuzzy classification systems, Mathware and Soft Computing 8 (2001) 203–216.A. Amo, J. Montero, V. Cutello, On the principles of fuzzy classification, in: R.N. Dave, T. Sudkamp (Eds.),Proceedings NAFIPS Conference, IEEE Press,Piscataway, NJ, 1999, pp.675–679.A. Amo, J. Montero, G. Biging, Classifying pixels by means of fuzzy relations, International Journal on General Systems 29 (2000) 605–621.A. Amo, J. Montero, G. Biging, V. Cutello, Fuzzy classification systems, European Journal of Operational Research 156 (2004) 459–507.A. Amo, J. Montero, A. Fernandez, M. Lopez, J. Tordesillas, G. Biging, Spectral fuzzy classification: an application, IEEE Transactions on Systems Man and Cybernetics (C) 32 (2002) 42–48.S. Bandyopadhyay, U. Maulik, An evolutionary technique based on k-means algorithm for optimal clustering in RN , Information Sciences 108 (1998) 219–240.J.C. Bezdek, J.D. Harris, Fuzzy partitions and relations: an axiomatic basis for clustering,Fuzzy Sets and Systems 1 (1978) 111–127.H.J. Caulfield, J. Fu, S. Yoo, Artificial color image logic, Information Sciences 167 (2004) 1–7.H.D. Cheng, M. Miyojim, Automatic pavement distress detection system, Information Sciences 108 (1998) 219–240.D. Dubois, H. Prade, Fuzzy Sets and Systems, Theory and Applications, Academic Press, New York, 1980.D. Dubois, H. Prade, Ranking fuzzy numbers in the setting of possibility theory, Information Sciences 30 (1983) 183–224.G. Facchinetti, R.G. Ricci, A characterization of a general class of ranking functions on triangular fuzzy numbers, Fuzzy Sets and Systems 146 (2004) 297–312.D. Feng, S. Wenkang, C. Liangzhou, D. Yong, Z. Zhenfu, Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization,Pattern Recognition Letters 26 (2005) 597–603.G.M. Foody, The continuum of classification fuzziness in thematics mapping, Photogrammetric Engineering and Remote Sensing 65 (1999) 443–451.D. Gomez, J. Montero, J. Yañez, C. Poidomani, A graph coloring algorithm approach for image segmentation, Omega, in press. DS Docta Complutense RD 15 may 2024