RT Journal Article T1 Spatial Chaos in a Chain of Coupled Bistable Oscillators A1 Makarov, Valeri A. A1 Nekorkin, Vladimir I. AB The spatiotemporal behavior of a chain of diffusively coupled bistable oscillators is investigated. It is stated that there is spatial disorder and its evolutionary character is demonstrated. PB American Physical Society SN 0031-9007 YR 1995 FD 1995-06-12 LK https://hdl.handle.net/20.500.14352/57707 UL https://hdl.handle.net/20.500.14352/57707 LA eng NO M. I. Rabinovich, A. L. Fabrikant, and L. Sh. Tsimring, Sov. Phys. Usp. 35, 629 (1992).P. Collet and J-P. Eckmann, Nonlinearity 5, 126 (1992).C. Nicolis, G. Nicolis, and Q. Wang, Int. J. Bifurcation Chaos 2, 263 (1992).P. Coullet, C. Elphick, and D. Repaux, Phys. Rev. Lett. 58, 431 (1987).I. S. Aranson, A. V. Gaponov-Grekhov, M. I. Rabinovich, A. V. Rogal'skii, and R. V. Sagdeev (to be published).L. A. Bunimovich and Ya. G. Sinai, Nonlinearity 1, 581 (1988).K. Kaneko, Physica (Amsterdam) 37D, 60 (1989).A-D. Defontaines, Y. Pomeau, and B. Rostand, Physica (Amsterdam) 46D, 201 (1990).A. Greenfield, S. Putterman, and W. Wright, Phys. Lett. A 185, 321 (1994).V. S. Afraimovich and V. I. Nekorkin, Int. J. Bifurcation Chaos 4, 631 (1994).J. D. Murray, Mathematical Biology (Springer-Verlag, New York, 1991).V. S. Afraimovich, V. I. Nekorkin, G. V. Osipov, and V. D. Shalfeev, Stability, Structures, and Chaos in Nonlinear Synchronization Networks (World Scientific, Singapore, 1995).R. Li and T. Erneux, Phys. Rev. A 49, 1301 (1994).W. Rappel, Phys. Rev. E 49, 2750 (1994).G. Dangelmayr and M. Kirby, Int. Series Numerical Math. 104, 85 (1992).S. Nichols and K. Wiesenfeld, Phys. Rev. E 50, 205 (1994).Ju. M. Romanovsky, N. V. Stepanova, and D. S. Chernavsky, Mathematical Simulation in Biophysics (Nauka, Moscov, 1975).Z. Nitecki, Differentiable Dynamics: An Introduction to the Orbit Structure of Diffeomorphisms (MIT, Cambridge, 1971).R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University, Cambridge, 1986). DS Docta Complutense RD 2 dic 2023