RT Journal Article T1 Quantum non-gravity and stellar collapse A1 Barceló, Carlos A1 Garay Elizondo, Luis Javier A1 Jannes, Gil AB Observational indications combined with analyses of analogue and emergent gravity in condensed matter systems support the possibility that there might be two distinct energy scales related to quantum gravity: the scale that sets the onset of quantum gravitational effects E-B ( related to the Planck scale) and the much higher scale E-L signalling the breaking of Lorentz symmetry. We suggest a natural interpretation for these two scales: E-L is the energy scale below which a special relativistic spacetime emerges, E-B is the scale below which this spacetime geometry becomes curved. This implies that the first 'quantum' gravitational effect around E-B could simply be that gravity is progressively switched off, leaving an effective Minkowski quantum field theory up to much higher energies of the order of E-L. This scenario may have important consequences for gravitational collapse, inasmuch as it opens up new possibilities for the final state of stellar collapse other than an evaporating black hole. PB Springer SN 0015-9018 YR 2011 FD 2011-09 LK https://hdl.handle.net/20.500.14352/44517 UL https://hdl.handle.net/20.500.14352/44517 LA spa NO [1] T. Jacobson, S. Liberati and D. Mattingly, “Lorentz violation at high energy: concepts, phenomena and astrophysical constraints,” Annals Phys. 321 (2006) 150 [arXiv:astro-ph/0505267]. [2] L. Maccione, A. M. Taylor, D. M. Mattingly and S. Liberati, “Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays,” JCAP 0904, 022 (2009) [arXiv:0902.1756 [astro-ph.HE]]. [3] G. Volovik, “From quantum hydrodynamics to quantum gravity,” in: H. Kleinert, R. T. Jantzen and R. Ruffini (eds.), Proceedings of the 11th Marcel Grossmann Meeting on General Relativity, World Scientific, Singapore (2008) [arXiv:gr-qc/0612134]. [4] G. E. Volovik, The Universe in a helium droplet, Clarendon Press, Oxford (2003). [5] G. E. Volovik, “Fermi-point scenario for emergent gravity,” PoS QG-Ph:043 (2007 [arXiv:0709.1258 [gr-qc]]. [6] M.F. Atiyah, R. Bott and A. Shapiro, “Clifford Modules,” Topology 3 Suppl. 1, 3 (1964). [7] P. Hořava, “Stability of Fermi surfaces and K-theory,” Phys. Rev. Lett. 95, 016405 (2005). [hep-th/0503006]. [8] A. D. Sakharov, “Vacuum quantum fluctuations in curved space and the theory of gravitation,” Sov. Phys. Dokl. 12, 1040 (1968) [Dokl. Akad. Nauk Ser. Fiz. 177, 70 (1967)]. [9] M. Visser, “Sakharov’s induced gravity: A modern perspective,” Mod. Phys. Lett. A 17 (2002) 977 [arXiv:grqc/0204062]. [10] C. Barcel´o, S. Liberati and M. Visser, “Analogue gravity,” Living Rev. Rel. 8, 12 (2005) [arXiv:gr-qc/0505065]. http://www.livingreviews.org/lrr-2005-12. [11] S. Weinberg and E. Witten, “Limits On Massless Particles,” Phys. Lett. B 96 (1980) 59. [12] S. Boughn, “Nonquantum Gravity,” Found. Phys. 39, 331 (2009) [arXiv:0809.4218 [gr-qc]]. [13] C. Barceló, S. Liberati, S. Sonego and M. Visser, “Fate of gravitational collapse in semiclassical gravity,” Phys. Rev. D 77, 044032 (2008) [arXiv:0712.1130 [gr-qc]]. [14] C. Barceló, S. Liberati, S. Sonego and M. Visser, “Hawking-like radiation does not require a trapped region,” Phys. Rev. Lett. 97, 171301 (2006) [arXiv:grqc/0607008]. [15] A. Ashtekar and M. Bojowald, “Black hole evaporation: A paradigm,” Class. Quant. Grav. 22, 3349 (2005) [arXiv:gr-qc/0504029]. [16] P. O. Mazur, E. Mottola, “Gravitational vacuum condensate stars,” Proc. Nat. Acad. Sci. 101, 9545-9550 (2004). [arXiv:gr-qc/0407075]. NO © Springer.Financial support was provided by the Spanish MICINN through the projects FIS2008-06078- C03-01 and FIS2008-06078-C03-03 and by Junta de Andalucía through the projects FQM2288 and FQM219. The authors want to thank J.L. Jaramillo, S. Liberati, S. Sonego and M. Visser for some illuminating discussions. NO Spanish MICINN NO Junta de Andalucia DS Docta Complutense RD 4 may 2024