RT Generic T1 Aprendizaje por refuerzo profundo aplicado a juegos sencillos A1 Arranz Janeiro, Ricardo A1 Concepción Echeverría, Lidia A1 Caño Vega, Juan Ramón del A1 Ponce Belmonte, Francisco A1 Romero Sánchez, Juan Luis AB En este proyecto estudiaremos el campo del aprendizaje por refuerzo profundo, con el objetivo de lograr una aplicación estable en problemas clásicos de control. Para lograrlo investigaremos sus bases: el aprendizaje por refuerzo y las redes neuronales, comprobando cuáles son sus puntos fuertes y débiles. Después combinaremos lo aprendido para, progresivamente, mejorar el rendimiento y la estabilidad de nuestros agentes.En busca de una mayor comprensión de su funcionamiento, todas las implementaciones de los agentes y algoritmos serán hechas por nosotros mismos. Todo ello será puesto a prueba a través del conocido sistema OpenAI Gym.Todo el código fuente referente a este proyecto puede encontrarse en: https://github.com/delcanovega/TFG-DRL AB In this project we will study the Deep Reinforcement Learning field in order to achieve an stable application for classic control problems. To do this we will investigate its fundamentals: Reinforcement Learning and Neural Networks, learning which are their strengths and weaknesses. Finally, we will merge both to progressivly improve our agent’s performance and stability.In order to gain a better insight we will personally implement the agents and algorithms. All of this will be tested through the popular framework OpenAI Gym.This project’s source code can be found in the repository: https://github.com/delcanovega/TFG-DRL YR 2019 FD 2019 LK https://hdl.handle.net/20.500.14352/15225 UL https://hdl.handle.net/20.500.14352/15225 LA spa NO Todo el código fuente referente a este proyecto puede encontrarse en: https://github.com/delcanovega/TFG-DRLTrabajo de Fin de Grado, Universidad Complutense, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, Curso 2018/2019 DS Docta Complutense RD 6 abr 2025