%0 Journal Article %A Heras Juaristi, Gemma %A Amador, Ulises %A Fuentes, Rodolfo %A Chinelatto, Adilson %A Romero de Paz, Julio %A Ritter, Clemens %A Fagg, Duncan %A Pérez Coll, Domingo %A Mather, Glenn %T Thermal evolution of structures and conductivity of Pr-substituted BaZr0.7Ce0.2Y0.1O3-delta: potential cathode components for protonic ceramic fuel cells %D 2017 %@ 2050-7488 %U https://hdl.handle.net/20.500.14352/100226 %X A complete solid solution forms between the perovskite proton conductor BaZr0.7Ce0.2Y0.1O3 d (BZCY72) and BaPr0.9Y0.1O3-d (BPY) on synthesis by the Pechini method and high-temperature annealing. Phase fields of selected members of the Ba(Zr0.7Ce0.2)1-(x/0.9)PrxY0.1O3-d series were studied as a function of composition and temperature by high-resolution neutron powder diffraction revealing symmetry changes in the sequence Pnma / Imma / R3c / Pm-3m. Higher symmetry is favoured for low Pr contents and high temperatures, as consideration of tolerance factor suggests. A volume contraction, ascribed to dehydration, is observed by synchrotron X-ray diffraction on heating in air for lower x. Magnetic measurements and structural data support the presence of Pr in the IV valence state on the perovskite B site. Thermogravimetric analysis in CO2 to near 1253 K indicates better chemical stability for x <= 0.445, whereas decomposition occurred for higher x. Electrical conductivity increases by over two orders of magnitude in dry air at lower temperature from x = 0.225 to 0.675; total conductivity reaches a value of 0.4 S cm-1 at 1173 K for x = 0.675. The series exhibits electron–hole transport with a positive pO2 dependence which increases with temperature, consistent with participation of oxygen vacancies in charge compensation of the Y3+ acceptor dopant. The activation energy for thermally activated hole hopping in air in the range 523–773 K decreases from near 1 eV for BZCY72 to near 0.4 eV for x = 0.675. Conductivity is generally lower in humidified N2 and air (pH2O = 0.023 atm) than the corresponding dry atmospheres, consistent with consumption of holes by less mobile protonic species; however for x <= 0.225 the lower concentration of electron holes concomitant with higher oxygen-vacancy content in N2 results in slightly higher conductivity in wet conditions due to hydration of vacancies. %~