RT Journal Article T1 Intraband exciton relaxation in a biased lattice with long-range correlated disorder A1 Díaz García, Elena A1 Domínguez-Adame Acosta, Francisco AB We numerically study the intraband exciton relaxation in a one-dimensional lattice with a scale-free disorder in the presence of a linear bias. Exciton transport is the incoherent hopping over the eigenstates of the static lattice. The site potential of the unbiased lattice is long-range-correlated with a power-law spectral density S(k)similar to 1/k(alpha), alpha>0. The lattice supports a phase of extended states at the center of the band, provided alpha is larger than a critical value alpha(c) [F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 (1998)]. When the bias is applied, the absorption spectrum displays clear signatures of the Wannier-Stark ladder [E. Diaz, F. Dominguez-Adame, Yu. A. Kosevich, and V. A. Malyshev, Phys. Rev. B 73, 174210 (2006)]. We demonstrate that in unbiased lattices and in weakly correlated potentials, the decay law is nonexponential. However, the decay is purely exponential when the bias increases and alpha is large. We relate this exponential decay to the occurrence of the Wannier-Stark ladder in the exciton band. PB American Physical Society SN 1098-0121 YR 2008 FD 2008-04 LK https://hdl.handle.net/20.500.14352/51236 UL https://hdl.handle.net/20.500.14352/51236 LA eng NO 1. M. Paczuski, S. Maslov, and P. Bak, Phys. Rev. E 53, 414 (1996).2. S. Havlin, S. V. Buldyrev, A. Bunde, A. L. Goldberger, P. Ch. Ivanov, C.-K. Peng, and H. E. Stanley, Physica A 273, 46 (1999).3. P. Carpena, P. Bernaola-Galván, P. Ch. Ivanov, and H. E. Stanley, Nature London 418, 955 2002; 421, 764 (2003). 4. H. Yamada, Phys. Lett. A 332, 65 (2004); Int. J. Mod. Phys. B 18, 1697 (2004); Phys. Rev. B 69, 014205 (2004). 5. E. L. Albuquerque, M. S. Vasconcelos, M. L. Lyra, and F. A. B.F. de Moura, Phys. Rev. E 71, 021910 (2005).6. S. Roche, D. Bicout, and E. Maciá, Phys. Rev. Lett. 92, 109901 (2004). 7. F. A. B. F. de Moura and M. L. Lyra, Phys. Rev. Lett. 81, 3735 (1998).8. F. M. Izrailev and A. A. Krokhin, Phys. Rev. Lett. 82, 4062 (1999). 9. G.-P. Zhang and S.-J. Xiong, Eur. Phys. J. B 29, 491 (2002).10. H. Shima, T. Nomura, and T. Nakayama, Phys. Rev. B 70, 075116 (2004). 11. F. Bloch, Z. Phys. 52, 555 (1928). 12. F. Domínguez-Adame, V. A. Malyshev, F. A. B. F. de Moura, and M. L. Lyra, Phys. Rev. Lett. 91, 197402 (2003). 13. G. H. Wannier, Phys. Rev. 117, 432 (1960). 14. E. Díaz, F. Domínguez-Adame, Yu. A. Kosevich, and V. A. Malyshev, Phys. Rev. B 73, 174210 (2006). 15. D. J. Heijs, V. A. Malyshev, and J. Knoester, J. Chem. Phys. 121, 4884 (2004). 16. M. Bednarz, V. A. Malyshev, and J. Knoester, J. Chem. Phys. 117, 6200 (2002). 17. M. Shimizu, S. Suto, and T. Goto, J. Chem. Phys. 114, 2775 (2001). 18. M. Bednarz, V. A. Malyshev, J. P. Lemaistre, and J. Knoester, J. Lumin. 94-95, 271 (2001)19. A. V. Malyshev, V. A. Malyshev, and F. Domínguez-Adame, Chem. Phys. Lett. 371, 417 (2003). 20. A. V. Malyshev, V. A. Malyshev, and F. Domínguez-Adame, J. Phys. Chem. 107, 4418 (2003).21. E. E. Méndez, F. Agulló-Rueda, and J. M. Hong, Phys. Rev. Lett. 60, 2426 (1988). 22. F. Agulló-Rueda, E. E. Méndez, and J. M. Hong, Phys. Rev. B 40, 1357 (1989). 23. M. K. Saker, D. M. Whittaker, M. S. Skolnick, M. T. Emeny, and C. R. Whitehouse, Phys. Rev. B 43, 4945 (1991). 24. H. Fukuyama, R. A. Bari, and H. C. Fogedby, Phys. Rev. B 8, 5579 (1973). NO ©2008 The American Physical Society.The authors thank V. A. Malyshev and Yu. A. Kosevich for helpful conversations. This work was supported by MEC Project MOSAICO. NO MEC DS Docta Complutense RD 8 may 2024