RT Journal Article T1 Correlation between ion hopping conductivity and near constant loss in ionic conductors A1 León Yebra, Carlos A1 Ngai, K. L. A1 Rivera Calzada, Alberto Carlos AB For ionic conductivity relaxation in ionically conducting materials we predict in the framework of the coupling model that the magnitude of the ubiquitous near constant loss correlates with the activation energy E_(a) for independent ion hopping. Using experimental data of a variety of ionic conductors, this correlation has been borne out. The model also explains the observed correlation between the magnitude of the near constant loss and the value of the dc conductivity at room temperature, as well as the temperature dependence for the near constant loss. PB American Physical Society SN 1098-0121 YR 2004 FD 2004-04-16 LK https://hdl.handle.net/20.500.14352/51435 UL https://hdl.handle.net/20.500.14352/51435 LA eng NO 1) C.A. Angell, Annu. Rev. Phys. Chem., 43, 693 (1992).2) V. Dusastre, Nature (London), 414, 331 (2001).3) K.L. Ngai, J. Non-Cryst. Solids, 203, 232 (1996).4) Proceedings of the fourth International Discussion Meeting on Relaxations in Complex Systems, Heraklion, Crete, Greece, Jun 2001, edited by K.L. Ngai, G. Floudas, A.K. Rizos, and E. Riande @J. Non-Cryst. Solids, 307-310 (2002).5) J. Wong, C.A. Angell, Glass Structure by Spectroscopy (Dekker, New York, 1976).6) W.K. Lee, J.F. Liu, A.S. Nowick, Phys. Rev. Lett., 67, 1559 (1991).7) H. Jain, S. Krishnaswami, Solid State Ionics, 105, 129 (1998) --- H. Jain, X. Lu, J. Non-Cryst. Solids, 196, 285 (1996).8) C. León, A. Rivera, A. Várez, J. Sanz, J. Santamaría, K.L. Ngai, Phys. Rev. Lett., 86, 1279 (2001).9) K.L. Ngai, J. Chem. Phys., 110, 10 576 (1999), see references therein.10) B. Roling, C. Martiny, S. Murugavel, Phys. Rev. Lett., 87, 085901 (2001).11) C. León, A. Rivera, J. Santamaría, C.T. Moynihan, K.L. Ngai, Phys. Rev. Lett., 89, 079601 (2002).12) J. Kincs, S.W. Martin, Phys. Rev. Lett., 76, 70 (1996).13) A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric, London, 1983).14) C.T. Moynihan, Solid State Ionics, 105, 75 (1998).15) K.L. Ngai, Y. Wang, C.T. Moynihan, J. Non-Cryst. Solids, 307-310, 999 (2002).16) K. Funke, D. Wilmer, Solid State Ionics, 136-137, 1329 (2000).17) J.C. Dyre, T.B. Schroder, Rev. Mod. Phys., 72, 873 (2000).18) K.L. Ngai, C. León, Phys. Rev. B, 66, 064308 (2002), see references therein.19) K.L. Ngai, Comments Solid State Phys., 9, 121 (1979).20) K.L. Ngai, Philos. Mag. B, 77, 187 (1998).21) K.L. Ngai, R.W. Rendell, in Supercooled Liquids, Advances and Novel Applications, edited by J.T. Fourkas, et al., ACS Symposium Series Vol. 676 (Am. Chem. Soc., Washington, DC, 1997), p. 45.22) J. Habasaki, K.L. Ngai, Y. Hiwatari, Phys. Rev. E, 66, 021205 (2002).23) K.L. Ngai, S.W. Martin, Phys. Rev. B, 40, 10, 550 (1989).24) A. Rivera, C. León, C.P.E. Varsamis, G.D. Chryssikos, K.L. Ngai, C.M. Roland, L.J. Buckley, Phys. Rev. Lett., 88, 125902 (2002).25) G.D. Chryssikos, L. Liu, C.P. Varsamis, E.I. Kamitsos, J. Non-Cryst. Solids, 235-237, 761 (1998).26) D.L. Sidebottom, P.F. Green, R.K. Brow, Phys. Rev. Lett., 74, 5068 (1995).27) C.H. Hsieh, H. Jain, J. Non-Cryst. Solids, 203, 293 (1996).28) A.S. Nowick, A.V. Vaysleb, W. Liu, Solid State Ionics, 105, 121 (1998).29) R. Belin, A. Zerouale, A. Pradel, M. Ribes, Solid State Ionics, 143, 445 (2001). NO © 2004 The American Physical Society. C.L. and A.R. thank J. Santamaría for fruitful discussions. Financial support from CICYT Grant No. MAT2001-3713- C04 is acknowledged. The work performed at NRL was supported by ONR. NO CICYT NO ONR DS Docta Complutense RD 7 may 2024