RT Journal Article T1 Radial continuous rotation invariant valuations on star bodies A1 Villanueva Díez, Ignacio AB We characterize the positive radial continuous and rotation invariant valuations V defined on the star bodies of Rn as the applications on star bodies which admit an integral representation with respect to the Lebesgue measure. That is,V(K)=∫Sn−1θ(ρK)dm, where θ is a positive continuous function, ρK is the radial function associated to K and m is the Lebesgue measure on Sn−1. As a corollary, we obtain that every such valuation can be uniformly approximated on bounded sets by a linear combination of dual quermassintegrals. PB Elsevier SN 0001-8708 YR 2016 FD 2016 LK https://hdl.handle.net/20.500.14352/24365 UL https://hdl.handle.net/20.500.14352/24365 LA eng NO Villanueva Díez, I. «Radial Continuous Rotation Invariant Valuations on Star Bodies». Advances in Mathematics, vol. 291, marzo de 2016, pp. 961-81. DOI.org (Crossref), https://doi.org/10.1016/j.aim.2015.12.030. NO Ministerio de Economía, Comercio y Empresa (España) NO Comunidad de Madrid DS Docta Complutense RD 8 abr 2025