RT Journal Article T1 Best Alternatives to Cronbach's Alpha Reliability in Realistic Conditions: Congeneric and Asymmetrical Measurements A1 Alvarado Izquierdo, Jesús María A1 Trizano Hermosilla, Italo AB The Cronbach's alpha is the most widely used method for estimating internal consistency reliability. This procedure has proved very resistant to the passage of time, even if its limitations are well documented and although there are better options as omega coefficient or the different versions of glb, with obvious advantages especially for applied research in which the ítems differ in quality or have skewed distributions. In this paper, using Monte Carlo simulation, the performance of these reliability coefficients under a one-dimensional model is evaluated in terms of skewness and no tau-equivalence. The results show that omega coefficient is always better choice than alpha and in the presence of skew items is preferable to use omega and glb coefficients even in small samples. PB HolmesFinch SN 1664-1078 YR 2016 FD 2016-05-26 LK https://hdl.handle.net/20.500.14352/24528 UL https://hdl.handle.net/20.500.14352/24528 LA spa NO Al-Homidan, S. (2008). Semidefinite programming for the educational testing problem. Cent. Eur. J. Oper. Res. 16, 239–249. doi: 10.1007/s10100-008-0056-0CrossRef Full Text | Google ScholarBernaards, C., and Jennrich, R. (2015). Package “GPArotation.” Available online at: http://ftp.daum.net/CRAN/web/packages/GPArotation/GPArotation.pdfCho, E., and Kim, S. (2015). Cronbach's coefficient alpha: well known but poorly understood. Organ. Res. Methods 18, 207–230. doi: 10.1177/1094428114555994CrossRef Full Text | Google ScholarCortina, J. (1993). What is coefficient alpha? An examination of theory and applications. J. Appl. Psychol. 78, 98–104. doi: 10.1037/0021-9010.78.1.98CrossRef Full Text | Google ScholarCronbach, L. (1951). Coefficient alpha and the internal structure of tests. Psychometrika 16, 297–334. doi: 10.1007/BF02310555CrossRef Full Text | Google ScholarDunn, T. J., Baguley, T., and Brunsden, V. (2014). From alpha to omega: a practical solution to the pervasive problem of internal consistency estimation. Br. J. Psychol. 105, 399–412. doi: 10.1111/bjop.12046PubMed Abstract | CrossRef Full Text | Google ScholarGraham, J. M. (2006). Congeneric and (essentially) tau-equivalent estimates of score reliability what they are and how to use them. Educ. Psychol. Meas. 66, 930–944. doi: 10.1177/0013164406288165CrossRef Full Text | Google ScholarGreen, S. B., and Yang, Y. (2009a). Commentary on coefficient alpha: a cautionary tale. Psychometrika 74, 121–135. doi: 10.1007/s11336-008-9098-4CrossRef Full Text | Google ScholarGreen, S. B., and Yang, Y. (2009b). Reliability of summed item scores using structural equation modeling: an alternative to coeficient Alpha. Psychometrika 74, 155–167. doi: 10.1007/s11336-008-9099-3CrossRef Full Text | Google ScholarGreen, S. B., and Yang, Y. (2015). Evaluation of dimensionality in the assessment of internal consistency reliability: coefficient alpha and omega coefficients. Educ. Meas. Issues Pract. 34, 14–20. doi: 10.1111/emip.12100CrossRef Full Text | Google ScholarHeadrick, T. C. (2002). Fast fifth-order polynomial transforms for generating univariate and multivariate nonnormal distributions. Comput. Stat. Data Anal. 40, 685–711. doi: 10.1016/S0167-9473(02)00072-5CrossRef Full Text | Google ScholarHo, A. D., and Yu, C. C. (2014). Descriptive statistics for modern test score distributions: skewness, kurtosis, discreteness, and ceiling effects. Educ. Psychol. Meas. 75, 365–388. doi: 10.1177/0013164414548576CrossRef Full Text | Google ScholarHoogland, J. J., and Boomsma, A. (1998). Robustness studies in covariance structure modeling an overview and a meta-analysis. Sociol. Methodol. 26, 329–367. doi: 10.1177/0049124198026003003CrossRef Full Text | Google ScholarHunt, T. D., and Bentler, P. M. (2015). Quantile lower bounds to population reliability based on locally optimal splits. Psychometrika 80, 182–195. doi: 10.1007/s11336-013-9393-6CrossRef Full Text | Google ScholarJackson, P. H., and Agunwamba, C. C. (1977). Lower bounds for the reliability of the total score on a test composed of non-homogeneous items: I: algebraic lower bounds. Psychometrika 42, 567–578. doi: 10.1007/BF02295979CrossRef Full Text | Google ScholarJavali, S. B., Gudaganavar, N. V., and Raj, S. M. (2011). Effect of Varying Sample Size in Estimation of Coefficients of Internal Consistency. Available online at: https://www.webmedcentral.com/wmcpdf/Article_WMC001649.pdfLila, M., Oliver, A., Catalá-Miñana, A., Galiana, L., and Gracia, E. (2014). The intimate partner violence responsibility attribution scale (IPVRAS). Eur. J. Psychol. Appl. Legal Contex 6, 29–36. doi: 10.5093/ejpalc2014a4CrossRef Full Text | Google ScholarLord, F. M., and Novick, M. R. (1968). Statistical Theories of Mental Test Scores. Menlo Park, CA: Addison-Wesley Publishing Company.Google ScholarMcDonald, R. (1999). Test Theory: a Unified Treatment. Mahwah, NJ: Lawrence Erlbaum Associates.Google ScholarMicceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychol. Bull. 105, 156–166. doi: 10.1037/0033-2909.105.1.156CrossRef Full Text | Google ScholarMoltner, A., and Revelle, W. (2015). Find the Greatest Lower Bound to Reliability. Available online at: http://personality-project.org/r/psych/help/glb.algebraic.htmlNorton, S., Cosco, T., Doyle, F., Done, J., and Sacker, A. (2013). The hospital anxiety and depression scale: a meta confirmatory factor analysis. J. Psychosom. Res. 74, 74–81. doi: 10.1016/j.jpsychores,.2012.10.010PubMed Abstract | CrossRef Full Text | Google ScholarR Development Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Racine, J. (2012). Rstudio: a plataform-independet IDE for R and sweave. J. Appl. Econom. 27, 167–172. doi: 10.1002/jae.1278CrossRef Full Text | Google ScholarRaykov, T. (1997). Scale reliability, cronbach's coefficient alpha, and violations of essential tau- equivalence with fixed congeneric components. Multivariate Behav. Res. 32, 329–353. doi: 10.1207/s15327906mbr3204_2PubMed Abstract | CrossRef Full Text | Google ScholarRaykov, T. (2001). Bias of coefficient alpha for fixed congeneric measures with correlated errors. Appl. Psychol. Meas. 25, 69–76. doi: 10.1177/01466216010251005CrossRef Full Text | Google ScholarReise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behav. Res. 47, 667–696. doi: 10.1080/00273171.2012.715555PubMed Abstract | CrossRef Full Text | Google ScholarRevelle, W. (2015a). Alternative Estimates of Test Reliabiity. Available online at: http://personality-project.org/r/html/guttman.htmlRevelle, W. (2015b). Package “psych.” Available online at: http://org/r/psych-manual.pdfRevelle, W., and Zinbarg, R. (2009). Coefficients alpha, beta, omega, and the glb: comments on Sijtsma. Psychometrika 74, 145–154. doi: 10.1007/s11336-008-9102-zCrossRef Full Text | Google ScholarShapiro, A., and ten Berge, J. M. F. (2000). The asymptotic bias of minimum trace factor analysis, with applications to the greatest lower bound to reliability. Psychometrika 65, 413–425. doi: 10.1007/BF02296154CrossRef Full Text | Google ScholarSheng, Y., and Sheng, Z. (2012). Is coefficient alpha robust to non-normal data? Front. Psychol. 3:34. doi: 10.3389/fpsyg.2012.00034PubMed Abstract | CrossRef Full Text | Google ScholarSijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of Cronbach's alpha. Psychometrika 74, 107–120. doi: 10.1007/s11336-008-9101-0PubMed Abstract | CrossRef Full Text | Google ScholarSijtsma, K. (2012). Future of psychometrics: ask what psychometrics can do for psychology. Psychometrika 77, 4–20. doi: 10.1007/s11336-011-9242-4CrossRef Full Text | Google ScholarSijtsma, K., and van der Ark, L. A. (2015). Conceptions of reliability revisited and practical recommendations. Nurs. Res. 64, 128–136. doi: 10.1097/NNR.0000000000000077PubMed Abstract | CrossRef Full Text | Google ScholarSočan, G. (2000). Assessment of reliability when test items are not essentially t-equivalent. Dev. Surv. Methodol. 15, 23–35. Available online at: http://www.stat-d.si/mz/mz15/socan.pdfTang, W., and Cui, Y. (2012). A Simulation Study for Comparing Three Lower Bounds to Reliability. Available online at: http://www.crame.ualberta.ca/docs/April 2012/AERA paper_2012.pdfTarkkonen, L., and Vehkalahti, K. (2005). Measurement errors in multivariate measurement scales. J. Multivar. Anal. 96, 172–189. doi: 10.1016/j.jmva.2004.09.007CrossRef Full Text | Google Scholarten Berge, J. M. F., and Sočan, G. (2004). The greatest lower bound to the reliability of a test and the hypothesis of unidimensionality. Psychometrika 69, 613–625. doi: 10.1007/BF02289858CrossRef Full Text | Google ScholarTeo, T., and Fan, X. (2013). Coefficient alpha and beyond: issues and alternatives for educational research. Asia Pac. Educ. Res. 22, 209–213. doi: 10.1007/s40299-013-0075-zCrossRef Full Text | Google ScholarWilcox, S., Schoffman, D. E., Dowda, M., and Sharpe, P. A. (2014). Psychometric properties of the 8-item english arthritis self-efficacy scale in a diverse sample. Arthritis 2014:385256. doi: 10.1155/2014/385256PubMed Abstract | CrossRef Full Text | Google ScholarWoodhouse, B., and Jackson, P. H. (1977). Lower bounds for the reliability of the total score on a test composed of non-homogeneous items: II: a search procedure to locate the greatest lower bound. Psychometrika 42, 579–591. doi: 10.1007/BF02295980CrossRef Full Text | Google ScholarYang, Y., and Green, S. B. (2011). Coefficient Alpha: a reliability coefficient for the 21st Century? J. Psychoeduc. Assess. 29, 377–392. doi: 10.1177/0734282911406668CrossRef Full Text | Google ScholarZinbarg, R. E., Revelle, W., Yovel, I., and Li, W. (2005). Cronbach's α, Revelle's β, and Mcdonald's ωH: their relations with each other and two alternative conceptualizations of reliability. Psychometrika 70, 123–133. doi: 10.1007/s11336-003-0974-7CrossRef Full Text | Google ScholarZinbarg, R. E., Yovel, I., Revelle, W., and McDonald, R. (2006). Estimating generalizability to a latent variable common to all of a scale's indicators: a comparison of estimators for h. Appl. Psychol. Meas. 30, 121–144. doi: 10.1177/0146621605278814CrossRef Full Text | Google Scholar DS Docta Complutense RD 1 may 2024