RT Journal Article T1 Function spaces of Lorentz-Sobolev type: Atomic decompositions, characterizations in terms of wavelets, interpolation and multiplications A1 Fernández Besoy, Blanca A1 Cobos Díaz, Fernando AB We establish atomic decompositions and characterizations in terms of wavelets for Besov-Lorentz spaces Bsq Lp,r (Rn) and for Triebel-Lizorkin-Lorentz spaces Fsq Lp,r (Rn) in the whole range of parameters. As application we obtain new interpolation formulae between spaces of Lorentz-Sobolev type. We also remove the restrictions on the parameters in a result of Peetre on optimal embeddings of Besov spaces. Moreover, we derive results on diffeomorphisms, extension operators and multipliers for Bsq Lp,∞ (Rn). Finally, we describe Bsq Lp,r (Rn) as an approximation space, which allows us to show new sufficient conditions on parameters for Bsq Lp,r (Rn) to be a multiplication algebra. PB Elsevier SN 0022-1236 YR 2022 FD 2022-03-04 LK https://hdl.handle.net/20.500.14352/71358 UL https://hdl.handle.net/20.500.14352/71358 LA eng NO CRUE-CSIC (Acuerdos Transformativos 2022) NO Ministerio de Ciencia, Innovación y Universidades (España)/Fondo Europeo de Desarrollo Regional NO Ministerio de Educación, Formación Profesional y Deportes (España) DS Docta Complutense RD 10 abr 2025