RT Journal Article
T1 Asymptotics of the trap-dominated Gunn effect in p-type Ge
A1 Bonilla, L.L.
A1 Hernando, Pedro J.
A1 Herrero, Miguel A.
A1 Kindelan, M.
A1 VelÃ¡zquez, J.J. L.
AB We present an asymptotic analysis of the Gunn effect in a drift-diffusion model - including electric-field-dependent generation-recombination processes - for long samples of strongly compensated p-type Ge at low temperature and under d.c. voltage bias. During each Gunn oscillation, there are different stages corresponding to the generation, motion and annihilation of solitary waves. Each stage may be described by one evolution equation for only one degree of freedom (the current density), except for the generation of each new wave. The wave generation is a faster process that may be described by solving a semiinfinite canonical problem. As a result of our study we have found that (depending on the boundary condition) one or several solitary waves may be shed during each period of the oscillation. Examples of numerical simulations validating our analysis are included.
PB Elsevier
SN 0167-2789
YR 1997
FD 1997-09-15
LK https://hdl.handle.net/20.500.14352/57673
UL https://hdl.handle.net/20.500.14352/57673
LA eng
NO S.W. Teitsworth, R.M. Westervelt and E.E. Hailer, Phys. Rev. Lett. 51 (1983) 825.A.M. Kahn, D.J. Mar and R.M. Westervelt, Phys. Rev. B 43 (1991) 9740.J.B. Gunn, IBM .I. Res. Dev. 8 (1964) 141.A.M. Kahn, D.J. Mar and R.M. Westervelt, Phys. Rev. B 46 (1992) 7469.A.M. Kahn, D.J. Mar and R.M. Westervelt, Phys. Rev. B 45 (1992) 8342.A.M. Kahn, D.J. Mar and R.M. Westervelt, Phys. Rev. Lett. 46 (1992) 369.S.W. Teitsworth and R.M. Westervelt, Phys. Rev. Lett. 53 (1984) 2587.R.M. Westervelt and S.W. Teitsworth, J. Appl. Phys. 57 (1985) 5457.L.L. Bonilla, Phys. Rev. B 45 (1992) 11642.N.M. Haegel and A.M. White, Infrared Phys. 29 (1989) 915.H. Kroemer, IEEE Trans. ED- 15 ( 1968) 8 19.L.L. Bonilla, I.R. Cantalapiedra, M.J. Bergmann and SW. Teitsworth, Semicond. Sci. Technol. 9 (1994) 599.V.V. Mitin, Appl. Phys. A 39 (1986) 123.E. Schiill, Solid-State Electron. 31 (1988) 539.E. Schiill, Appl. Phys. A 48 (1989) 95.T. Kuhn et al., Phys. Rev. B 48 (1993) 1478.I.R. Cantalapiedra, L.L. Bonilla, M.J. Bergmann and S.W. Teitsworth, Phys. Rev. B 48 (1993) 12278.M.J. Bergmann, S.W. Teitsworth, L.L. Bonilla and I.R. Cantalapiedra, Phys. Rev. B 53 (1996) 1327.S.W. Teitsworth, M.J. Bergmann and L.L. Bonilla, in: Non-linear Dynamics and Pattern Formation in Semiconductors and Devices, Springer Proceedings in Physics, ed. F.-J. Niedemostheide, Vol. 79 (Springer, Berlin, 1995) pp. 46-69.L.L. Bonilla and S.W. Teitsworth, Physica D 50 (1991) 545.L.L. Bonilla, Physica D 55 (1992) 182.D. Henry, Geometric theory of semilinear equations, Lecture Notes in Mathematics, Vol. 840 (Springer, Berlin, 1981).L.L. Bonilla, F.J. Higuera and S. Venakides, SIAM J. Appl. Math. 54 (1994) 1521.F.J. Higuera and L.L. Bonilla, Physica D 57 (1992) 161.L.L. Bonilla and I.R. Cantalapiedra, preprint (1996).
DS Docta Complutense
RD 2 dic 2023