RT Journal Article T1 Universality in the three-dimensional random-field ising model A1 Fytas, Nikolaos G. A1 Martín Mayor, Víctor AB We solve a long-standing puzzle in statistical mechanics of disordered systems. By performing a high-statistics simulation of the D = 3 random-field Ising model at zero temperature for different shapes of the random-field distribution, we show that the model is ruled by a single universality class. We compute the complete set of critical exponents for this class, including the correction-to-scaling exponent, and we show, to high numerical accuracy, that scaling is described by two independent exponents. Discrepancies with previous works are explained in terms of strong scaling corrections. PB American Physical Society SN 0031-9007 YR 2013 FD 2013-05-29 LK https://hdl.handle.net/20.500.14352/35534 UL https://hdl.handle.net/20.500.14352/35534 LA eng NO © 2013 American Physical Society. We were partly supported by MICINN, Spain, through research contracts No. FIS2009-12648-C03 and No. FIS2012-35719-C02-01. Significant allocations of computing time were obtained in the clusters Terminus and Memento (BIFI). We are grateful to D. Yllanes and, especially, to L. A. Fernández for substantial help during several parts of this work. We also thank A. Pelissetto and G. Tarjus for useful correspondence. NO Ministerio de Ciencia e Innovación (MICINN) DS Docta Complutense RD 18 abr 2025