RT Journal Article T1 Deep learning exotic hadrons A1 Ng, L. A1 Bibrzycki, Ł. A1 Nys, J. A1 Fernández Ramírez, César A1 Pilloni, A. A1 Mathieu, Vincent A1 Rasmusson, A. J. A1 Szczepaniak, A. P. AB We perform the first amplitude analysis of experimental data using deep neural networks to determine the nature of an exotic hadron. Specifically, we study the line shape of the P c ( 4312 ) signal reported by the LHCb collaboration, and we find that its most likely interpretation is that of a virtual state. This method can be applied to other near-threshold resonance candidates. PB APS Physics SN 2470-0010 YR 2022 FD 2022-05-17 LK https://hdl.handle.net/20.500.14352/71951 UL https://hdl.handle.net/20.500.14352/71951 LA eng NO Unión Europea. Horizonte 2020 NO Ministerio de Ciencia e Innovación (MICINN) NO T DS Docta Complutense RD 9 abr 2025