RT Journal Article T1 From Ramond fermions to Lamé equations for orthogonal curvilinear coordinates A1 Mañas Baena, Manuel A1 Martínez Alonso, Luis AB We show how Ramond free neutral Fermi fields lead to a Ƭ-function theory of BKP type which describes iso-orthogonal deformations of systems of orthogonal curvilinear coordinates. We also provide a vertex operator representation for the classical Ribaucour transformation. PB Elsevier Science BV SN 0370-2693 YR 1998 FD 1998-09-24 LK https://hdl.handle.net/20.500.14352/59693 UL https://hdl.handle.net/20.500.14352/59693 LA eng NO [1] L. Bianchi, Lezione di Geometria Differenziale, 3- a ed., Zanichelli, Bologna, 1924. [2] G. Darboux, Lec¸ons sur la theorie generale des surfaces IV, Gauthier-Villars, Paris, 1896. Peprinted by Chelsea Publishing Company, New York, 1972.[3] G. Darboux, Lec¸ons sur les systemes orthogonaux et les coordenées curvilignes (deuxieme edition), Gauthier-Villars, Paris, 1910 (the first edition was in 1897) . Reprinted by Éditions Jacques Gabay, Sceaux, 1993.[4] G. Darboux, Ann. L’Ecole Normale 3 (1866) 97.[5] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, Physica D 4 (1982) 343. [6] A. Doliwa, M. Mañas, L. Martínez Alonso, E. Medina, P.M. Santini, Charged Free Fermions, Vertex Operators and Classical Theory of Conjugate Nets, 1998, solv-intr9803015. [7] R. Dijkgraff, E. Verlinde, H. Verlinde, Nucl. Phys. B 352 (1991) 59. [8] B. Dubrovin, Nucl. Phys. B 379 1992 627. [9] L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Ginn, Co., Boston, 1909. [10] L.P. Eisenhart, Transformations of Surfaces, Princeton University Press, Princeton, 1923. Reprinted by Chelsea Publishing Company, New York, 1962. [11] D.-Th. Egorov, Comp. Rend. Acad. Sci. Paris 131 (1900) 668; 132 (1901) 174. [12] P. Goddard, D. Olive, Int. J. Mod. Phys. 1 (1986) 303. [13] I.M. Krichever, Func. Anal. Appl. 31 (1997) 25. [14] G. Lamé, Lec çons sur la théorie des coordenées curvilignes et leurs diverses applications, Mallet-Bachalier, Paris, 1859.[15] A. Ribaucour, Comp. Rend. Acad. Sci. Paris 74 (1872) 1489. [16] G. Segal, G. Wilson, Publ. Math. IHES 61 (1985) 5. [17] E. Witten, Nucl. Phys. B 340 (1990) 281. [18] V.E. Zakharov, On Integrability of the Equations Describing N-Orthogonal Curvilinear Coordinate Systems and Hamiltonian Integrable Systems of Hydrodynamic Type I: Integration of the Lame Equations, Preprint, 1996. NO ©1998 Elsevier Science B.V. DS Docta Complutense RD 4 dic 2023