RT Journal Article T1 Monomorphisms and epimorphisms in pro-categories A1 Dydak, J. A1 Romero Ruiz del Portal, Francisco AB A morphism of a category which is simultaneously an epimorphism and a monomorphism is called a bimorphism. We give haracterizations of monomorphisms (respectively, epimorphisms) in pro-category pro-C, provided C has direct sums (respectively,pushouts).Let E(C) (respectively, M(C)) be the subcategory of C whose morphisms are epimorphisms (respectively, monomorphisms)of C. We give conditions in some categories C for an object X of pro-C to be isomorphic to an object of pro-E(C) (respectively,pro-M(C)).A related class of objects of pro-C consists of X such that there is an epimorphism X→P ∈ Ob(C) (respectively, a monomorphismP Ob(C) →X). Characterizing those objects involves conditions analogous (respectively, dual) to the Mittag–Leffler property. One should expect that the object belonging to both classes ought to be stable. It is so in the case of pro-groups. The natural environment to discuss those questions are balanced categories with epimorphic images. The last part of the paper deals with that question in pro-homotopy. PB Elsevier Science SN 0166-8641 YR 2007 FD 2007 LK https://hdl.handle.net/20.500.14352/50343 UL https://hdl.handle.net/20.500.14352/50343 LA eng NO NSF Ministry of Science and Education of Spain NO MEC DS Docta Complutense RD 7 may 2025