RT Journal Article T1 Derivative and factorization of holomorphic functions A1 Bombal Gordon, Fernando A1 Gutiérrez, Joaquín M. A1 Villanueva Díez, Ignacio AB Let E  be a complex Banach space and denote by H b (E)  the space of all holomorphic functions f:E→C  of bounded type, that is, bounded on bounded sets. It is known that f∈H b (E)  admits a factorization of the form f=g∘S  , with S  a compact linear operator and g  a holomorphic function of bounded type if and only if the derivative df:E→E ∗   takes bounded sets of E  into relatively compact sets of E ∗   . In the weakly compact case, a similar result was obtained by R. M. Aron and P. Galindo [Proc. Edinburgh Math. Soc. (2) 40 (1997), no. 1, 181–192;]. In the paper under review, the authors extend these results to closed injective operator ideals and the associated families of bounded sets. Moreover, this main result is applied to give examples of factorization through operators belonging to important closed injective operator ideals. PB Elsevier SN 0022-247X YR 2008 FD 2008-12-01 LK https://hdl.handle.net/20.500.14352/50479 UL https://hdl.handle.net/20.500.14352/50479 LA eng NO Dirección General de Investigación NO Universidad Complutense de Madrid DS Docta Complutense RD 8 abr 2025