RT Journal Article T1 Sur la réductibilité de la variété des algèbres de Lie nilpotentes complexes A1 Hakimjanov, Yu. B. A1 Ancochea Bermúdez, José María A1 Goze, Michel AB Let Nn be the variety of nilpotent Lie algebra laws of a given complex vector space Cn. M. Vergne showed ["Variété des algèbres de Lie nilpotentes'', Thèse de 3ème cycle, Spéc. Math., Paris, 1966; BullSig(110) 1967:299; Bull. Soc. Math. France 98 (1970), 81–116; that Nn is irreducible for n≤6 and has at least two components for n=7 and n≥11. In this note, the authors prove the reducibility of Nn for n=8,9,10, thus answering affirmatively a question of Vergne. The last part of this work improves results of Vergne concerning some components of Nn, for n≥11. PB Elsevier SN 0764-4442 YR 1991 FD 1991 LK https://hdl.handle.net/20.500.14352/58437 UL https://hdl.handle.net/20.500.14352/58437 LA fra DS Docta Complutense RD 10 abr 2025