RT Journal Article T1 Investigating the Blazar TXS 0506+056 through Sharp Multiwavelength Eyes During 2017-2019 A1 Baquero Larriva, Orlando Andrés A1 Barrio Uña, Juan Abel A1 Contreras González, José Luis A1 Hoang, Kim Dinh A1 López Moya, Marcos A1 Mas Aguilar, Alvaro A1 Miener, Tjark A1 Morcuende, D. A1 Peñil Del Campo, Pablo AB The blazar TXS 0506+056 got into the spotlight of the astrophysical community in 2017 September, when a high-energy neutrino detected by IceCube (IceCube-170922A) was associated at the 3 sigma level with a gamma-ray flare from this source. This multi-messenger photon-neutrino association remains, as per today, the most significant association ever observed. TXS 0506+056 was a poorly studied object before the IceCube-170922A event. To better characterize its broadband emission, we organized a multiwavelength campaign lasting 16 months (2017 November to 2019 February), covering the radio band (Metsahovi, OVRO), the optical/UV (ASAS-SN, KVA, REM, Swift/UVOT), the X-rays (Swift/XRT, NuSTAR), the high-energy gamma rays (Fermi/LAT), and the very high-energy (VHE) gamma rays (MAGIC). In gamma rays, the behavior of the source was significantly different from the behavior in 2017: MAGIC observations show the presence of flaring activity during 2018 December, while the source only shows an excess at the 4 sigma level during the rest of the campaign (74 hr of accumulated exposure); Fermi/LAT observations show several short (on a timescale of days to a week) flares, different from the long-term brightening of 2017. No significant flares are detected at lower energies. The radio light curve shows an increasing flux trend that is not seen in other wavelengths. We model the multiwavelength spectral energy distributions in a lepto-hadronic scenario, in which the hadronic emission emerges as Bethe-Heitler and pion-decay cascade in the X-rays and VHE gamma rays. According to the model presented here, the 2018 December gamma-ray flare was connected to a neutrino emission that was too brief and not bright enough to be detected by current neutrino instruments. PB IOP Publishing SN 0004-637X YR 2022 FD 2022-03-01 LK https://hdl.handle.net/20.500.14352/71448 UL https://hdl.handle.net/20.500.14352/71448 LA eng NO Artículo firmado por 212 autores. We would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF, MPG, and HGF; the Italian INFN and INAF; the Swiss National Fund SNF; the ERDF under the Spanish Ministerio de Ciencia e Innovación (MICINN) (PID2019-104114RB-C31, PID2019-104114RB-C32, PID2019-104114RBC33, PID2019-105510GB-C31,PID2019-107847RB-C41, PID2019-107847RB-C42, PID2019-107847RB-C44, PID2019-107988GB-C22); the Indian Department of Atomic Energy; the Japanese ICRR, the University of Tokyo, JSPS, and MEXT; the Bulgarian Ministry of Education and Science, National RI Roadmap Project DO1-400/18.12.2020 and the Academy of Finland grant nr. 320045 is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia "Severo Ochoa" (SEV-2016-0588, SEV-2017-0709, CEX2019-000920-S), the Unidad de Excelencia "María de Maeztu" (CEX2019-000918-M, MDM-2015-0509-18-2) and by the CERCA program of the Generalitat de Catalunya; by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02; by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3; the Polish National Research Centre grant UMO-2016/22/M/ST9/00382; and by the Brazilian MCTIC, CNPq and FAPERJ. E.P. acknowledges funding from the Italian Ministry of Education, University and Research (MIUR) through the "Dipartimenti di eccellenza" project Science of the universe. M.C. has received financial support through the Postdoctoral Junior Leader Fellowship Programme from la Caixa Banking Foundation, grant No. LCF/BQ/LI18/11630012. This research has made use of data from the OVRO 40 m monitoring program, which was supported in part by NASA grants NNX08AW31G, NNX11A043G, and NNX14AQ89G, and NSF grants AST-0808050 and AST-1109911, and private funding from Caltech and the MPIfR. This publication makes use of data obtained at Metsahovi Radio Observatory, operated by Aalto University in Finland. The authors would like to thank the anonymous referee for their comments that improved the present manuscript. We would like to thank the Instituto de Astrofisica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The financial support of the German BMBF, MPG, and HGF; the Italian INFN and INAF; the Swiss National Fund SNF; the ERDF under the Spanish Ministerio de Ciencia e Innovacion (MICINN) (PID2019-104114RB-C31, PID2019-104114RB-C32, PID2019-104114RBC33, PID2019-105510GB-C31,PID2019-107847RB-C41, PID2019-107847RB-C42, PID2019-107847RB-C44, PID2019-107988GB-C22); the Indian Department of Atomic Energy; the Japanese ICRR, the University of Tokyo, JSPS, and MEXT; the Bulgarian Ministry of Education and Science, National RI Roadmap Project DO1-400/18.12.2020 and the Academy of Finland grant nr. 320045 is gratefully acknowledged. This work was also supported by the Spanish Centro de Excelencia "Severo Ochoa" (SEV-2016-0588, SEV-2017-0709, CEX2019-000920-S), the Unidad de Excelencia "Maria de Maeztu" (CEX2019-000918-M, MDM-2015-0509-18-2) and by the CERCA program of the Generalitat de Catalunya; by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02; by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3; the Polish National Research Centre grant UMO-2016/22/M/ST9/00382; and by the Brazilian MCTIC, CNPq and FAPERJ. E.P.; acknowledges funding from the Italian Ministry of Education, University and Research (MIUR) through the "Dipartimenti di eccellenza" project Science of the universe. M.C. has received financial support through the Postdoctoral Junior Leader Fellowship Programme from la Caixa Banking Foundation, grant No. LCF/BQ/LI18/11630012. This research has made use of data from the OVRO 40 m monitoring program, which was supported in part by NASA grants NNX08AW31G, NNX11A043G, and NNX14AQ89G, and NSF grants AST-0808050 and AST-1109911, and private funding from Caltech and the MPIfR. This publication makes use of data obtained at Metsahovi Radio Observatory, operated by Aalto University in Finland. The authors would like to thank the anonymous referee for their comments that improved the present manuscript. NO Ministerio de Ciencia e Innovación (MICINN) NO Centro de Excelencia Severo Ochoa NO Unidad de Excelencia María de Maeztu NO German BMBF Federal Ministry of Education & Research (BMBF) NO German MPG NO German HGF NO Italian INFN Istituto Nazionale di Fisica Nucleare (INFN) NO Italian INAF Istituto Nazionale Astrofisica (INAF) NO Swiss National Fund SNF Swiss National Science Foundation (SNSF) NO Indian Department of Atomic Energy NO Japanese ICRR NO Japanese University of Tokyo NO Japanese JSPS Ministry of Education, Culture, Sports, Science and Technology, Japan NO Japanese MEXT Ministry of Education, Culture, Sports, Science and Technology, Japan NO Bulgarian Ministry of Education and Science NO National RI Roadmap Project NO Academy of FinlandAcademy of Finland NO CERCA program of the Generalitat de Catalunya NO Croatian Science Foundation (HrZZ) NO University of Rijeka Project NO DFG Collaborative Research Centers German Research Foundation (DFG) NO Polish National Research Centre NO Brazilian MCTIC NO Brazilian CNPq Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) NO Brazilian FAPERJ NO Italian Ministry of Education, University and Research (MIUR) through the "Dipartimenti di eccellenza" project Science of the universo Ministry of Education, Universities and Research (MIUR) NO Postdoctoral Junior Leader Fellowship Programme from la Caixa Banking Foundation NO NASA National Aeronautics & Space Administration (NASA) NO NSF National Science Foundation (NSF) NO Caltech NO MPIfR DS Docta Complutense RD 7 abr 2025