%0 Journal Article %A Martil De La Plaza, Ignacio %A González Díaz, Germán %A Prado Millán, Álvaro Del %A San Andrés Serrano, Enrique %T Influence of H on the composition and atomic concentrations of "N-rich" plasma deposited SiOxNyHz films %D 2004 %@ 0021-8979 %U https://hdl.handle.net/20.500.14352/51120 %X The influence of H on the composition and atomic concentrations of Si, O, and N of plasma deposited SiOxNyHz films was investigated. The bonding scheme of H was analyzed by Fourier-transform infrared spectroscopy. The composition and absolute concentrations of all the species present in the SiOxNyHz, including H, was measured by heavy-ion elastic recoil detection analysis (HI-ERDA). Samples were deposited from SiH4, O-2, and N-2 gas mixtures, with different gas flow ratios in order to obtain compositions ranging from SiNyHz to SiO2. Those samples deposited at higher SiH4 partial pressures show both Si-H and N-H bonds, while those deposited at lower SiH4 partial pressures show N-H bonds only. The Si-H and N-H bond concentrations were found to be proportional to the N concentration. The concentration of H was evaluated from the Si-H and N-H stretching absorption bands and compared to the HI-ERDA results, finding good agreement between both measurements. The deviation from H-free stoichiometric SiOxNy composition due to the presence of N-H bonds results in an effective coordination number of N to produce Si-N bonds lower than 3. By fitting the experimental composition data to a theoretical model taking into account the influence of N-H bonds, the actual concentration of N-H bonds was obtained, making evident the presence of nonbonded H. The presence of Si-H and Si-Si bonds was found to partially compensate the effect of N-H bonds, from the point of view of the relative N and Si contents. Finally, the presence of N-H bonds results in a lower Si atom concentration with respect to the stoichiometric film, due to a replacement of Si atoms by H atoms. This decrease of the Si concentration is lower in those films containing Si-H and Si-Si bonds. A model was developed to calculate the Si, O, and N atom concentrations taking into account the influence of N-H, Si-H, and Si-Si bonds, and was found to be in perfect agreement with the experimental data measured by HI-ERDA. %~