RT Journal Article T1 Paclitaxel-Loaded Folate-Targeted Albumin-Alginate Nanoparticles Crosslinked with Ethylenediamine. Synthesis and In Vitro Characterization A1 Martínez Relimpio, Ana María A1 Benito, Marta A1 Pérez Izquierdo, Elena A1 Teijón López, César A1 Olmo López, Rosa María A1 Blanco Gaitán, María Dolores AB Among the different ways to reduce the secondary effects of antineoplastic drugs in cancer treatment, the use of nanoparticles has demonstrated good results due to the protection of the drug and the possibility of releasing compounds to a specific therapeutic target. The α-isoform of the folate receptor (FR) is overexpressed on a significant number of human cancers; therefore, folate-targeted crosslinked nanoparticles based on BSA and alginate mixtures and loaded with paclitaxel (PTX) have been prepared to maximize the proven antineoplastic activity of the drug against solid tumors. Nanometric-range-sized particles (169 ± 28 nm–296 ± 57 nm), with negative Z-potential values (between −0.12 ± 0.04 and −94.1± 0.4), were synthesized, and the loaded PTX (2.63 ± 0.19–3.56 ±0.13 µg PTX/mg Np) was sustainably released for 23 and 27 h. Three cell lines (MCF-7, MDA-MB-231 and HeLa) were selected to test the efficacy of the folate-targeted PTX-loaded BSA/ALG nanocarriers. The presence of FR on the cell membrane led to a significantly larger uptake of BSA/ALG–Fol nanoparticles compared with the equivalent nanoparticles without folic acid on their surface. The cell viability results demonstrated a cytocompatibility of unloaded nanoparticle– Fol and a gradual decrease in cell viability after treatment with PTX-loaded nanoparticle–Fol due to the sustainable PTX release. PB Multidisciplinary Digital Publishing Institute (MDPI) YR 2021 FD 2021-06-24 LK https://hdl.handle.net/20.500.14352/130383 UL https://hdl.handle.net/20.500.14352/130383 LA eng NO Martínez-Relimpio AM, Benito M, Pérez-Izquierdo E, Teijón C, Olmo RM, Blanco MD. Paclitaxel-loaded folate-targeted albumin-alginate nanoparticles crosslinked with ethylenediamine. Synthesis and in vitro characterization. Polymers. 2021;13(13). NO Esta investigación fue financiada por la Universidad Santander‑Complutense de Madrid (PR26/16‑20273 y PR75/18‑21575) y la Universidad Francisco de Vitoria (UFV) DS Docta Complutense RD 16 ene 2026