RT Journal Article T1 Streaming potential across cation-exchange membranes in methanol-water electrolyte solutions A1 Barragán García, Vicenta María A1 Ruiz Bauzá, Carlos A1 Imaña Pascual, José Luis AB Streaming potential measurements across charged membranes separating two equal solutions have been carried out. Two cation-exchange membranes with different cross-linked and swelling properties (Ionics and Nafion membranes) and methanol-water electrolyte solutions of KCl have been used in the experiments. The obtained results show that the streaming potential is higher for the Ionics membrane and that the values depend on the methanol content of the solutions. A different behavior is found in the dependence of the streaming potential on the methanol percentage for each membrane. The study of the relaxation times in the decay of electrokinetic steady states of streaming potential has been carried out from the time dependence of the streaming potential when the pressure difference through the membrane is suppressed. The results show the existence of two different parts or partial relaxations, mechanical and electric. A different behavior of the mechanical relaxation time with the methanol percentage has been found for the two membranes, but any significant difference between their electric relaxation times. These differences have been explained in terms of the different degree of swelling of the membranes used. PB Academic Press Inc Elsevier Science SN 0021-9797 YR 2006 FD 2006-02-15 LK https://hdl.handle.net/20.500.14352/50554 UL https://hdl.handle.net/20.500.14352/50554 LA eng NO [1] T. Moritz, S. Benfer, P. Arki, G. Tomandl, Colloids Surf. A Physicochem. Eng. Aspects 195 (2001) 25.[2] M. Sbaï, P. Fievet, A. Szymczyk, B. Aoubiza, A. Vidonne, A. Foissy, J. Membr. Sci. 215 (2003) 1.[3] P. Fievet, M. Sbaï, A. Szymczyk, A. Vidonne, J. Membr. Sci. 226 (2003) 227.[4] C. Exartier, S. Maximovitch, B. Baroux, Corros. Sci. 46 (2004) 1777.[5] R.P. Rastogi, G.P. Mishra, P.C. Pandey, K. Bala, K. Kumar, J. Colloid Interface Sci. 217 (1999) 275.[6] R.P. Rastogi, R.C. Srivastava, S.N. Singh, Chem. Rev. 93 (1993) 1945.[7] S.R. De Groot, Thermodynamics of Irreversible Processes, fourth ed., North Holland, Amsterdam, 1966.[8] I. Prigogine, Introduction of Thermodynamic of Irreversible Processes, third ed., Wiley, New York, 1968.[9] S. Kjelstrup, T. Okada, M. Ottøy, in: T.S. Sørensem (Ed.), Surface Chemistry and Electrochemistry of Membranes, Dekker, New York, 1999, Chap. 13.[10] T. Okada, S. Kjelstrup, H. Hanche-Olsen, J. Membr. Sci. 66 (1992) 179.[11] V.M. Barragán, C. Ruiz-Bauzá, J. Non-Equilib. Thermodyn. 22 (1997) 374.[12] D. Nandan, H. Mohan, R.M. Iyer, J. Membr. Sci. 71 (1992) 69.[13] J.M. Reynard, C. Larchet, G. Bulvestre, B. Auclair, J. Membr. Sci. 67 (1992) 57.[14] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, 13th Annual Meeting of the North American Membrane Society, Proceedings, Long Beach, CA, 2002, p. 26.[15] JO’M. Bockris, A.K.N. Reddy, Modern Electrochemistry, vol. 1, Plenum/Rosseta, New York, 1973.[16] T.J. Chou, A. Tanioka, J. Membr. Sci. 144 (1998) 275.[17] V.M. Barragán, C. Ruiz-Bauzá, J. Colloid Interface Sci. 247 (2002) 138.[18] V.M. Barragán, C. Ruiz-Bauzá, J.P.G. Villaluenga, B. Seoane, J. Colloid Interface Sci. 236 (2004) 109.[19] V.S. Bagotzky, Fundamental of Electrochemistry, Plenum Press, New York, 1993.[20] P. Wang, A. Anderko, R.D. Young, Fluid Phase Equilib. 226 (2004) 71.[21] E. Skou, P. Kauranen, J. Hentschel, Solid State Ionics 97 (1997) 333.[22] X. Ren, T.E. Springer, S. Gottesfeld, J. Electrochem. Soc. 147 (2000) 92.[23] J.A. Ibáñez, J. Forte, A. Hernández, F. Tejerían, J. Membr. Sci. 36 (1988) 45.[24] C. Molina, L. Victoria, A. Arenas, J.A. Ibáñez, J. Membr. Sci. 163 (1999) 239. NO  2005 Elsevier Inc. DS Docta Complutense RD 2 may 2024