RT Journal Article T1 l(q)-structure of variable exponent spaces A1 Hernández, Francisco L. A1 Ruiz Bermejo, César AB It is shown that a separable variable exponent (or Nakano) function space L-p(.)(Ω) has a lattice-isomorphic copy of l(q) if and only if q is an element of Rp(.), the essential range set of the exponent function p(.). Consequently Rp(.) is a lattice-isomorphic invariant set. The values of q such that l(q) embeds isomorphically in L-p(.)(Ω) is determined. It is also proved the existence of a bounded orthogonal l(q)-projection in the space L-p(.)(Ω), for every q is an element of Rp(.) PB Elsevier SN 0022-247X YR 2012 FD 2012-05-15 LK https://hdl.handle.net/20.500.14352/42249 UL https://hdl.handle.net/20.500.14352/42249 LA eng DS Docta Complutense RD 10 may 2025