TY - CHAP AU - Calviño Martínez, Aída AU - Moreno Ribera, Almudena AU - Pineda Sanjuan, Silvia A4 - Larriba, Yolanda PY - 2023 DO - 10.1007/978-3-031-32729-2_2 SN - 978-3-031-32728-5 SN - 978-3-031-32729-2 UR - https://hdl.handle.net/20.500.14352/91677 AB - In this chapter we illustrate the use of some Machine Learning techniques in the context of omics data. More precisely, we review and evaluate the use of Random Forest and Penalized Multinomial Logistic Regression for integrative analysis of genomics... LA - eng M2 - 21 PB - Springer KW - Genomics KW - High-throughput data KW - Association rules KW - Random Forest KW - LASSO TI - Machine learning applied to omics data TY - book part ER -