TY - JOUR AU - de Diego, José A. AU - Nadolny, Jakub AU - Bongiovanni, Ángel AU - Cepa, Jordi AU - Povic, Mirjana AU - Pérez García, Ana María AU - Padilla Torres, Carmen P. AU - Lara-López, Maritza A. AU - Cerviño, Miguel AU - Pérez Martínez, Ricardo AU - Alfaro, Emilio J. AU - Castañeda, Héctor O. AU - Fernández-Lorenzo, Miriam AU - Gallego Maestro, Jesús AU - González, J. Jesús AU - González-Serrano, J. Ignacio AU - Pintos-Castro, Irene AU - Sánchez-Portal, Miguel AU - Cedrés, Bernabé AU - González-Otero, Mauro AU - Jones, D. Heath AU - Bland-Hawthorn, Joss PY - 2020 DO - 10.1051/0004-6361/202037697 SN - 0004-6361 UR - https://hdl.handle.net/20.500.14352/6478 T2 - Astronomy & Astrophysics AB - Context. The accurate classification of hundreds of thousands of galaxies observed in modern deep surveys is imperative if we want to understand the universe and its evolution.Aims. Here, we report the use of machine learning techniques to classify... LA - eng PB - EDP Sciencies KW - Convolutional neuronal-networks KW - Star-formation histories KW - Evolution survey cosmos KW - Morphological classification KW - Fundamental properties KW - Photometric redshifts KW - Stellar masses KW - Missing values KW - Disk KW - Decomposition TI - Galaxy classification: deep learning on the OTELO and COSMOS databases TY - journal article VL - 638 ER -