RT Journal Article T1 Phase space tomography reconstruction of the Wigner distribution for optical beams separable in Cartesian coordinates A1 Cámara, Alejandro A1 Alieva, Tatiana Krasheninnikova A1 Rodrigo Martín-Romo, José Augusto A1 Calvo Padilla, María Luisa AB We propose a simple approach for the phase space tomography reconstruction of the Wigner distribution of paraxial optical beams separable in Cartesian coordinates. It is based on the measurements of the antisymmetric fractional Fourier transform power spectra, which can be taken using a flexible optical setup consisting of four cylindrical lenses. The numerical simulations and the experimental results clearly demonstrate the feasibility of the proposed scheme. PB Optical Society of America SN 1084-7529 YR 2009 FD 2009-06 LK https://hdl.handle.net/20.500.14352/44186 UL https://hdl.handle.net/20.500.14352/44186 LA eng NO 1. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures”, Optik 35, 237-246 (1972). 2. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform”, Opt. Lett. 3, 27-29 (1978). 3. M. R. Teague, “Deterministic phase retrieval: a Green's function solution”, J. Opt. Soc. Am. 73, 1434-1441 (1983). 4. K. A. Nugent, “Wave field determination using 3-dimensional intensity information”, Phys. Rev. Lett. 68, 2261-2264 (1992). 5. M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wavefield reconstruction using phase-space tomography”, Phys. Rev. Lett. 72, 1137-1140 (1994). 6. D. F. McAlister, M. Beck, L. Clarke, M. Mayer, and M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transformation”, Opt. Lett. 20, 1181-1183 (1995). 7. Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain”, Opt. Lett. 21, 842-844 (1996). 8. J. Tu and S. Tamura, “Wave field determination using tomography of the ambiguity function”, Phys. Rev. E 42, 1932-1937 (2003). 9. D. Dragoman, “Redundancy of phase-space distribution functions in complex field recovery problems”, Appl. Opt. 42, 1932-1937 (2003). 10. T. Alieva, M. Bastiaans, and L. Stankovic, “Signal reconstruction from two close fractional Fourier power spectra”, IEEE Trans. Signal Process. 51, 112-123 (2003). 11. X. Liu and K. H. Brenner, “Reconstruction of two-dimensional complex amplitudes from intensity measurements”, Opt. Commun. 225, 19-30 (2003). 12. A. Semichaevsky and M. Testorf, “Phase-space interpretation of deterministic phase retrieval”, J. Opt. Soc. Am. A 21, 2173-2179 (2004). 13. C. Q. Tran, A. G. Peele, A. Roberts, K. A. Nugent, D. Paterson, and I. McNully, “X-ray imaging: a generalized approach using phase-space tomography”, J. Opt. Soc. Am. A 22, 1691-1699 (2005). 14. A. V. Gitin, “Optical systems for measuring the Wigner function of a laser beam by the method of phase-spacial tomography”, Quantum Electron. 37, 85-91 (2007). 15. U. Gopinathan, G. Situ, T. J. Naughton, and J. T. Sheridan, “Noninterferometric phase retrieval using a fractional Fourier system”, J. Opt. Soc. Am. A 25, 108-115 (2008). 16. H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001). 17. A. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform”, J. Opt. Soc. Am. A 10, 2181-2186 (1993). 18. S. Granieri, W. D. Furlan, G. Saavedra, and P. Andrés, “Radon-Wigner display: a compact optical implementation with a single varifocal lens”, Appl. Opt. 36, 8363-8369 (1997). 19. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Optical system design for orthosymplectic transformations in phase space”, J. Opt. Soc. Am. A 23, 2494-2500 (2006). 20. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Experimental implementation of the gyrator transform”, J. Opt. Soc. Am. A 24, 3135-3139 (2007). 21. M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light”, J. Opt. Soc. Am. A 3, 1227-1238 (1986). 22. J. C. Wood and D. T. Barry, “Radon transformation of time-frequency distributions for analysis of multicomponent signals”, IEEE Trans. Signal Process. 42, 3166-3177 (1994). S. R. Deans, “Radon and Abel transforms”, in The Transforms and Applications Handbook, A.D.Poularikas, ed. (CRC Press, 1999), pp. 8.1-8.95. NO © 2009 Optical Society of America.The financial support of the Spanish Ministry of Science and Innovation under project TEC 2008-04105/TEC is acknowledged. T. Alieva appreciates the financial support of the Banco Santander Central Hispano and Universidad Complutense de Madrid under project Santander-Complutense, PR-34/07-15914. J. A. Rodrigo acknowledges the Spanish Ministry of Science and Innovation for the “Juan de la Cierva” grant. We also thank G. Cristóbal for his valuable discussions on the numerical calculation of the WD. NO Ministerio de Ciencia e Innovación (MICINN), España NO Banco Santander Central Hispano (BSCH) NO Universidad Complutense de Madrid (UCM) DS Docta Complutense RD 30 abr 2024