%0 Journal Article %A Moscoso, Miriam %A Domenech Lucas, Miriam %A García, Ernesto %T Vancomycin tolerance in clinical and laboratory Streptococcus pneumoniae isolates depends on reduced enzyme activity of the major LytA autolysin or cooperation between CiaH histidine kinase and capsular polysaccharide %D 2010 %@ 0950-382X %U https://hdl.handle.net/20.500.14352/97516 %X Vancomycin is frequently added to standard therapy for pneumococcal meningitis. Although vancomycin-resistant Streptococcus pneumoniae strains have not been isolated, reports on the emergence of vancomycin-tolerant pneumococci are a cause of concern. To date, the molecular basis of vancomycin tolerance in S. pneumoniae is essentially unknown. We examined two vancomycin-tolerant clinical isolates, i.e. a purported autolysin negative (LytA-), serotype 23F isolate (strain S3) and the serotype 14 strain ‘Tupelo’, which is considered a paradigm of vancomycin tolerance. S3 was characterized here as carrying a frameshift mutation in the lytA gene encoding the main pneumococcal autolysin. The vancomycin tolerance of strain S3 was abolished by transformation to the autolysin-proficient phenotype. The original Tupelo strain was discovered to be a mixture: a strain showing a vancomycin-tolerant phenotype (Tupelo_VT) and a vancomycin-nontolerant strain (Tupelo_VNT). The two strains differed only in terms of a single mutation in the ciaH gene present in the VT strain. Most interestingly, although the vancomycin tolerance of Tupelo_VT could be overcome by increasing the LytA dosage upon transformation by a multicopy plasmid or by externally adding the autolysin, we show that vancomycin tolerance in S. pneumoniae requires the simultaneous presence of a mutated CiaH histidine kinase and capsular polysaccharide. %~