RT Journal Article T1 Superadditivity of Quantum Relative Entropy for General States A1 Capel, Angela A1 Lucia, Angelo A1 Pérez García, David AB The property of superadditivity of the quantum relative entropy states that, in a bipartite system H AB = H A ⊗ H B , for every density operator ρ AB , one has D(ρ AB ||σ A ⊗ σ B )≥ D(ρ A ||σ A ) + D(ρB||σB). In this paper, we provide an extension of this inequality for arbitrary density operators σ AB . More specifically, we prove that α(σ AB )· D(ρ AB ||σ AB )≥D(ρ A ||σ A )+ D(ρ B ||σ B ) holds for all bipartite states ρ AB and σ AB , where α(σ AB ) = 1 + 2||σ A -1/2 ⊗ σ AB σ A -1/2 ⊗ σ B -1/2 - || AB || ∞ . PB IEEE Xplore SN 4758-4765 YR 2017 FD 2017 LK https://hdl.handle.net/20.500.14352/93365 UL https://hdl.handle.net/20.500.14352/93365 LA eng NO A. Capel, A. Lucia, y D. Perez-Garcia, «Superadditivity of Quantum Relative Entropy for General States», IEEE Trans. Inform. Theory, vol. 64, n.o 7, pp. 4758-4765, jul. 2018, doi: 10.1109/TIT.2017.2772800. NO Comunidad de Madrid NO Ministerio de Economía y Competitividad (España) NO European Commission NO Fundación La Caixa NO Independent Research Fund Denmark DS Docta Complutense RD 10 abr 2025