RT Journal Article T1 Numerical study of the localization length critical index in a network model of plateau-plateau transitions in the quantum hall effect A1 Amado, M. A1 Malyshev, Andrey A1 Sedrakyan, A. A1 Domínguez-Adame Acosta, Francisco AB We calculate numerically the localization length critical index within the Chalker-Coddington model of the plateau-plateau transitions in the quantum Hall effect. We report a finite-size scaling analysis using both the traditional power-law corrections to the scaling function and the inverse logarithmic ones, which provided a more stable fit resulting in the localization length critical index v = 2.616 +/- 0.014. We observe an increase of the critical exponent v with the system size, which is possibly the origin of discrepancies with early results obtained for smaller systems. PB American Physical Society SN 0031-9007 YR 2011 FD 2011-08-03 LK https://hdl.handle.net/20.500.14352/44389 UL https://hdl.handle.net/20.500.14352/44389 LA eng NO [1] H. Levine, S. B. Libby, and A. M. M. Pruisken, Phys. Rev. Lett. 51, 1915 (1983); Nucl. Phys. B240, 30 (1984); B240, 49 (1984); B240, 71 (1984).[2] J. Chalker and P. Coddington, J. Phys. C 21, 2665 (1988).[3] B. Huckenstein, Rev. Mod. Phys. 67, 357 (1995).[4] H. P. Wei, L. W. Engel, and D. C. Tsui, Phys. Rev. B 50, 14 609 (1994).[5] D.-H. Lee, Z. Wang, and S. Kivelson, Phys. Rev. Lett. 70, 4130 (1993).[6] D.-H. Lee, Phys. Rev. B 50, 10 788 (1994).[7] D.-H. Lee and Z. Wang, Philos. Mag. Lett. 73, 145 (1996).[8] M. R. Zirnbauer, Ann. Phys. (Berlin) 506, 513 (1994); N. Read (private communication to M. R. Zirnbauer); see Ref. [56] there.[9] M. R. Zirnbauer, J. Math. Phys. (N.Y.) 38, 2007 (1997).[10] M. J. Bhaseen, I. I. Kogan, O. A. Soloviev, N. Taniguchi, and A. M. Tsvelik, Nucl. Phys. B580, 688 (2000); A. M. Tsvelik, Phys. Rev. B 75, 184201 (2007).[11] A. LeClair, Phys. Rev. B 64, 045329 (2001).[12] S. Cho and M. P. A. Fisher, Phys. Rev. B 55, 1025 (1997).[13] A. Sedrakyan, Phys. Rev. B 68, 235329 (2003).[14] K. Slevin and T. Ohtsuki, Phys. Rev. B 80, 041304(R) (2009).[15] H. Obuse, A. R. Subramaniam, A. Furusaki, I. A. Gruzberg, and A. W. W. Ludwig, Phys. Rev. Lett. 101, 116802 (2008).[16] F. Evers, A. Mildenberger, and A. D. Mirlin, Phys. Rev. Lett. 101, 116803 (2008).[17] A. MacKinnon and B. Kramer, Z. Phys. B 53, 1 (1983).[18] V. N. Tutubalin, Theory Probab. Appl. 10, 15 (1965).[19] A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981).[20] K. Slevin and T. Ohtsuki, Phys. Rev. Lett. 78, 4083 (1997); 82, 382 (1999).[21] F. Milde, R. A. Roömer, M. Schreiber, and V. Uski, Eur. Phys. J. B 15, 685 (2000).[22] A. Eilmes, A. M. Fisher, and R. Römer, Phys. Rev. B 77, 245117 (2008).[23] W. Press, B. Flannery, and S. Teukolsky, Numerical Recipes in Fortran (Cambridge University Press, Cambridge, England, 1992), Chap. 15.[24] A. G. Galstyan and M. E. Raikh, Phys. Rev. B 56, 1422 (1997).[25] P. Cain, R. Ro¨mer, and M. E. Raikh, Phys. Rev. B 67, 075307 (2003).[26] W. Li, G. A. Csa´thy, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 94, 206807 (2005).[27] W. Li, C. L. Vicente, J. S. Xia, W. Pan, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 102, 216801 (2009). NO © 2011 American Physical Society.A. S. acknowledges discussions with I. Gruzberg and V. Kagalovsky and the hospitality of the Universidad Complutense de Madrid, where the major part of the work has been done. A. V. M. and F. D.-A. thank K. Slevin, T. Ohtsuki, and R. Römer for fruitful discus- sions. Part of the calculations were performed at the Aula Sun Cluster and the Clúster de Ca´lculo de Alta Capacidad para Técnicas Físicas, funded by the UCM and the EU under the FEDER program. Work in Madrid was supported by MICINN (Projects Mosaico and MAT2010-17180) NO UCM NO EU-FEDER program NO MICINN DS Docta Complutense RD 14 may 2024