RT Journal Article T1 Simultaneous co-delivery of neuroprotective drugs from multiloaded PLGA microspheres for the treatment of glaucoma A1 Arranz Romera, Alicia A1 Davis, Benjamin M. A1 Bravo Osuna, Irene A1 Esteban Pérez, Sergio A1 Molina-Martínez, Irene T. A1 Shamsher, Ehtesham A1 Ravindran, Nivedita A1 Guo, Li A1 Cordeiro, M. Francesca A1 Herrero-Vanrell, Rocío AB Glaucoma is a multifactorial neurodegenerative disorder and one of the leading causes of irreversible blindness globally and for which intraocular pressure is the only modifiable risk factor. Although neuroprotective therapies have been suggested to have therapeutic potential, drug delivery for the treatment of ocular disorders such as glaucoma remains an unmet clinical need, further complicated by poor patient compliance with topically applied treatments. In the present study we describe the development of multi-loaded PLGA-microspheres (MSs) incorporating three recognised neuroprotective agents (dexamethasone (DX), melatonin (MEL) and coenzyme Q10 (CoQ10)) in a single formulation (DMQ-MSs) to create a novel sustained-release intraocular drug delivery system (IODDS) for the treatment of glaucoma. MSs were spherical, with a mean particle size of 29.04 ± 1.89 μm rendering them suitable for intravitreal injection using conventional 25G-32G needles. Greater than 62% incorporation efficiency was achieved for the three drug cargo and MSs were able to co-deliver the encapsulated active compounds in a sustained manner over 30-days with low burst release. In vitro studies showed DMQ-MSs to be neuroprotective in a glutamate-induced cytotoxicity model (IC50 10.00±0.94 mM versus 6.89±0.82 mM in absence of DMQ-MSs) in R28 cell line. In vivo efficacy studies were performed using a well-established rodent model of chronic ocular hypertension (OHT), comparing single intravitreal injections of microspheres of DMQ-MSs to their equivalent individual single drug loaded MSs mixture (MSsmix), empty MSs, no-treatment OHT only and naïve groups. Twenty one days after OHT induction, DMQ-MSs showed a significantly neuroprotective effect on RGCs compared to OHT only controls. No such protective effect was observed in empty MSs and single-drug MSs treated groups. This work suggests that multi-loaded PLGA MSs present a novel therapeutic approach in the management of retinal neurodegeneration conditions such as glaucoma. PB Elsevier SN 0168-3659 YR 2019 FD 2019-03-10 LK https://hdl.handle.net/20.500.14352/13148 UL https://hdl.handle.net/20.500.14352/13148 LA eng NO [1] S.R. Flaxman, R.R.A. Bourne, S. Resnikoff, P. Ackland, T. Braithwaite, M.V. Cicinelli, A. Das,J.B. Jonas, J. Keeffe, J.H. Kempen, J. Leasher, H. Limburg, K. Naidoo, K. Pesudovs, A. Silvester,G.A. Stevens, N. Tahhan, T.Y. Wong, H.R. Taylor, S. Vision Loss Expert Group of the GlobalBurden of Disease, Global causes of blindness and distance vision impairment 1990-2020: asystematic review and meta-analysis, Lancet Glob Health, 5 (2017) e1221-e1234.[2] M. Lawlor, H. Danesh-Meyer, L.A. Levin, I. Davagnanam, E. De Vita, G.T. Plant, Glaucomaand the brain: Trans-synaptic degeneration, structural change, and implications forneuroprotection, Surv Ophthalmol, (2017).[3] R. Asaoka, H. Murata, M. Yanagisawa, Y. Fujino, M. Matsuura, T. Inoue, K. Inoue, J.Yamagami, The association between photoreceptor layer thickness measured by opticalcoherence tomography and visual sensitivity in glaucomatous eyes, PLoS One, 12 (2017)e0184064.[4] B.S. Ashimatey, B.J. King, W.H. Swanson, Retinal putative glial alterations: implication forglaucoma care, Ophthalmic Physiol Opt, 38 (2018) 56-65.[5] A.I. Ramirez, R. de Hoz, E. Salobrar-Garcia, J.J. Salazar, B. Rojas, D. Ajoy, I. Lopez-Cuenca, P.Rojas, A. Trivino, J.M. Ramirez, The Role of Microglia in Retinal Neurodegeneration:Alzheimer's Disease, Parkinson, and Glaucoma, Front Aging Neurosci, 9 (2017) 214.[6] J. Qu, D. Wang, C.L. Grosskreutz, Mechanisms of retinal ganglion cell injury and defense inglaucoma, Exp Eye Res, 91 (2010) 48-53.[7] A. Pascale, F. Drago, S. Govoni, Protecting the retinal neurons from glaucoma: loweringocular pressure is not enough, Pharmacol Res, 66 (2012) 19-32.[8] D.R. Anderson, S. Normal Tension Glaucoma, Collaborative normal tension glaucoma study,Curr Opin Ophthalmol, 14 (2003) 86-90.[9] European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition -Chapter 3: Treatment principles and options Supported by the EGS Foundation: Part 1:Foreword; Introduction; Glossary; Chapter 3 Treatment principles and options, Br JOphthalmol, 101 (2017) 130-195.[10] M.T. Pardue, R.S. Allen, Neuroprotective strategies for retinal disease, Prog Retin Eye Res,(2018).[11] C. Nucci, R. Russo, A. Martucci, C. Giannini, F. Garaci, R. Floris, G. Bagetta, L.A. Morrone,New strategies for neuroprotection in glaucoma, a disease that affects the central nervoussystem, Eur J Pharmacol, 787 (2016) 119-126.[12] A. Baltmr, J. Duggan, S. Nizari, T.E. Salt, M.F. Cordeiro, Neuroprotection in glaucoma - Isthere a future role?, Exp Eye Res, 91 (2010) 554-566.[13] R. Russo, G.P. Varano, A. Adornetto, C. Nucci, M.T. Corasaniti, G. Bagetta, L.A. Morrone,Retinal ganglion cell death in glaucoma: Exploring the role of neuroinflammation, Eur JPharmacol, 787 (2016) 134-142.[14] C. McMonnies, Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygentherapy, J Optom, 11 (2018) 3-9.[15] G. Tezel, Oxidative stress in glaucomatous neurodegeneration: mechanisms andconsequences, Prog Retin Eye Res, 25 (2006) 490-513.[16] N. Cuenca, L. Fernandez-Sanchez, L. Campello, V. Maneu, P. De la Villa, P. Lax, I. Pinilla,Cellular responses following retinal injuries and therapeutic approaches for neurodegenerativediseases, Prog Retin Eye Res, 43 (2014) 17-75.[17] B.G. Short, Safety evaluation of ocular drug delivery formulations: techniques andpractical considerations, Toxicol Pathol, 36 (2008) 49-62.[18] P. Mitchell, A systematic review of the efficacy and safety outcomes of anti -VEGF agentsused for treating neovascular age-related macular degeneration: comparison of ranibizumaband bevacizumab, Curr Med Res Opin, 27 (2011) 1465-1475.[19] I.B.-O. V. Andrés-Guerrero, P. Pastoriza, I.T. Molina-Martinez, Rocí. Herrero-Vanrell, Noveltechnologies for the delivery of ocular therapeutics in glaucoma, Journal of Drug DeliveryScience and Technology, 42 (2017) 181-192.[20] I. Bravo-Osuna, V. Andres-Guerrero, A. Arranz-Romera, S. Esteban-Perez, I.T. Molina-Martinez, R. Herrero-Vanrell, Microspheres as intraocular therapeutic tools in chronic diseasesof the optic nerve and retina, Adv Drug Deliv Rev, (2018).[21] X. Rong, W. Yuan, Y. Lu, X. Mo, Safety evaluation of poly(lactic-co-glycolic acid)/poly(lacticacid)microspheres through intravitreal injection in rabbits, Int J Nanomedicine, 9 (2014) 3057-3068.[22] I. Bravo-Osuna, V. Andres-Guerrero, P. Pastoriza Abal, I.T. Molina-Martinez, R. Herrero-Vanrell, Pharmaceutical microscale and nanoscale approaches for efficient treatment of oculardiseases, Drug Deliv Transl Res, 6 (2016) 686-707.[23] M. Zhao, E. Rodriguez-Villagra, L. Kowalczuk, M. Le Normand, M. Berdugo, R. Levy-Boukris,I. El Zaoui, B. Kaufmann, R. Gurny, I. Bravo-Osuna, I.T. Molina-Martinez, R. Herrero-Vanrell, F.Behar-Cohen, Tolerance of high and low amounts of PLGA microspheres loaded withmineralocorticoid receptor antagonist in retinal target site, J Control Release, 266 (2017) 187-197.[24] L.B. García-Caballero C., Arranz-Romera A., Molina-Martínez I.T., Bravo-Osuna I., YoungM., Baranov P., Herrero-Vanrell R., Photoreceptor preservation induced by intravitrealcontrolled delivery of GDNF and GDNF/melatonin in rhodopsin knockout mice, MolecularVision, 24 (2018) 733-745[25] N.V. Saraiya, D.A. Goldstein, Dexamethasone for ocular inflammation, Expert OpinPharmacother, 12 (2011) 1127-1131.[26] G. Zhang, S. Liu, L. Yang, Y. Li, The role of Dexamethasone in clinical pharmaceuticaltreatment for patients with cataract surgery, Exp Ther Med, 15 (2018) 2177-2181.[27] C.J. Brady, A.C. Villanti, H.A. Law, E. Rahimy, R. Reddy, P.C. Sieving, S.J. Garg, J. Tang,Corticosteroid implants for chronic non-infectious uveitis, Cochrane Database Syst Rev, 2(2016) CD010469.[28] P.O. Lundmark, S.R. Pandi-Perumal, V. Srinivasan, D.P. Cardinali, R.E. Rosenstein,Melatonin in the eye: implications for glaucoma, Exp Eye Res, 84 (2007) 1021-1030.[29] P. Wongprayoon, P. Govitrapong, Melatonin as a mitochondrial protector inneurodegenerative diseases, Cell Mol Life Sci, 74 (2017) 3999-4014.[30] A.W. Siu, G.G. Ortiz, G. Benitez-King, C.H. To, R.J. Reiter, Effects of melatonin on the nitricoxide treated retina, Br J Ophthalmol, 88 (2004) 1078-1081.[31] S.A. Andrabi, I. Sayeed, D. Siemen, G. Wolf, T.F. Horn, Direct inhibition of themitochondrial permeability transition pore: a possible mechanism responsible for antiapoptoticeffects of melatonin, FASEB J, 18 (2004) 869-871.[32] G.P. Littarru, L. Tiano, Clinical aspects of coenzyme Q10: an update, Nutrition, 26 (2010)250-254.[33] P. Forsmark-Andree, C.P. Lee, G. Dallner, L. Ernster, Lipid peroxidation and changes in theubiquinone content and the respiratory chain enzymes of submitochondrial particles, FreeRadic Biol Med, 22 (1997) 391-400.[34] A. Virmani, F. Gaetani, Z. Binienda, Effects of metabolic modifiers such as carnitines,coenzyme Q10, and PUFAs against different forms of neurotoxic insults: metabolic inhibitors,MPTP, and methamphetamine, Ann N Y Acad Sci, 1053 (2005) 183-191.[35] J.D. Hernandez-Camacho, M. Bernier, G. Lopez-Lluch, P. Navas, Coenzyme Q10Supplementation in Aging and Disease, Front Physiol, 9 (2018) 44.[36] B.M. Davis, K. Tian, M. Pahlitzsch, J. Brenton, N. Ravindran, G. Butt, G. Malaguarnera, E.M.Normando, L. Guo, M.F. Cordeiro, Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension, Mitochondrion, 36 (2017)114-123.[37] G.M. Seigel, Review: R28 retinal precursor cells: the first 20 years, Mol Vis, 20 (2014) 301-306.[38] J.C. Morrison, W.O. Cepurna, E.C. Johnson, Modeling glaucoma in rats by sclerosingaqueous outflow pathways to elevate intraocular pressure, Exp Eye Res, 141 (2015) 23-32.[39] J.C. Morrison, DeFrank, M. P. & Van Buskirk, E. M. , Comparative microvascular anatomyof mammalian ciliary processes, IOVS, 28 ( 1987) 1325–1340.[40] J.C. Morrison, C.G. Moore, L.M. Deppmeier, B.G. Gold, C.K. Meshul, E.C. Johnson, A ratmodel of chronic pressure-induced optic nerve damage, Exp Eye Res, 64 (1997) 85-96.[41] B.M. Davis, L. Guo, J. Brenton, L. Langley, E.M. Normando, M.F. Cordeiro, Automaticquantitative analysis of experimental primary and secondary retinal neurodegeneration:implications for optic neuropathies, Cell Death Discov, 2 (2016) 16031.[42] F.M. Nadal-Nicolas, M. Jimenez-Lopez, M. Salinas-Navarro, P. Sobrado-Calvo, J.J.Alburquerque-Bejar, M. Vidal-Sanz, M. Agudo-Barriuso, Whole number, distribution and coexpressionof brn3 transcription factors in retinal ganglion cells of adult albino and pigmentedrats, PLoS One, 7 (2012) e49830.[43] K. Park, Controlled drug delivery systems: past forward and future back, J Control Release,190 (2014) 3-8.[44] K.K. Jain, Current status and future prospects of drug delivery systems, Methods Mol Biol,1141 (2014) 1-56.[45] R. Herrero-Vanrell, I. Bravo-Osuna, V. Andres-Guerrero, M. Vicario-de-la-Torre, I.T.Molina-Martinez, The potential of using biodegradable microspheres in retinal diseases andother intraocular pathologies, Prog Retin Eye Res, 42 (2014) 27-43.[46] R.N. Weinreb, T. Aung, F.A. Medeiros, The pathophysiology and treatment of glaucoma: areview, JAMA, 311 (2014) 1901-1911.[47] B.M. Davis, L. Crawley, M. Pahlitzsch, F. Javaid, M.F. Cordeiro, Glaucoma: the retina andbeyond, Acta Neuropathol, 132 (2016) 807-826.[48] R.W. Nickells, G.R. Howell, I. Soto, S.W. John, Under pressure: cellular and molecularresponses during glaucoma, a common neurodegeneration with axonopathy, Annu RevNeurosci, 35 (2012) 153-179.[49] L. Zhao, G. Chen, J. Li, Y. Fu, T.A. Mavlyutov, A. Yao, R.W. Nickells, S. Gong, L.W. Guo, Anintraocular drug delivery system using targeted nanocarriers attenuates retinal ganglion celldegeneration, J Control Release, 247 (2017) 153-166.[50] R. Jeyanthi, Mehta, R. C., Thanoo, B. C., and DeLuca, P. P. , Effect of processing parameterson the properties of peptide containing PLGA microspheres, J. Microencapsulation, 14 (1997)163-174.[51] T.G. Park, Lee, H. Y., and Nam, Y. S., A new preparation method for protein loadedpoly(D,L-lactic-co-cjlycolic acid) microspheres and protein release mechanism study, J.Controlled Release, 55 (1998) 181-191.[52] Y. Yeo, K. Park, Control of encapsulation efficiency and initial burst in polymericmicroparticle systems, Arch Pharm Res, 27 (2004) 1-12.[53] R. Herrero-Vanrell, M.F. Refojo, Biodegradable microspheres for vitreoretinal drugdelivery, Adv Drug Deliv Rev, 52 (2001) 5-16.[54] V. Andres-Guerrero, M. Zong, E. Ramsay, B. Rojas, S. Sarkhel, B. Gallego, R. de Hoz, A.I.Ramirez, J.J. Salazar, A. Trivino, J.M. Ramirez, E.M. Del Amo, N. Cameron, B. de-Las-Heras, A.Urtti, G. Mihov, A. Dias, R. Herrero-Vanrell, Novel biodegradable polyesteramide microspheresfor controlled drug delivery in Ophthalmology, J Control Release, 211 (2015) 105-117.[55] L. Al Haushey, M.A. Bolzinger, C. Bordes, J.Y. Gauvrit, S. Briancon, Improvement of abovine serum albumin microencapsulation process by screening design, Int J Pharm, 344(2007) 16-25.[56] P.R. Nepal, H.K. Han, H.K. Choi, Enhancement of solubility and dissolution of coenzymeQ10 using solid dispersion formulation, Int J Pharm, 383 (2010) 147-153.[57] D.H. Paik, S.W. Choi, Entrapment of protein using electrosprayed poly(D,L-lactide-coglycolide)microspheres with a porous structure for sustained release, Macromol RapidCommun, 35 (2014) 1033-1038.[58] E.S. Farboud, S.A. Nasrollahi, Z. Tabbakhi, Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: in vitro and in vivo studies, Int J Nanomedicine, 6 (2011)611-617.[59] T. Musumeci, C. Bucolo, C. Carbone, R. Pignatello, F. Drago, G. Puglisi, Polymericnanoparticles augment the ocular hypotensive effect of melatonin in rabbits, Int J Pharm, 440(2013) 135-140.[60] S.D.a.U. Subuddhi, Controlled delivery of dexamethasone to the intestine from poly(vinylalcohol)–poly(acrylic acid) microspheres containing drug-cyclodextrin complexes: influence ofmethod of preparation ofinclusion complex, RSC Advances, 4 (2014) 24222–24231.[61] P.J. Checa-Casalengua, C. Bravo-Osuna, I. Tucker, B. A. Molina-Martinez, I. T. Young, M. J.,Herrero-Vanrell, R., Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGAmicrospheres prepared according to a novel microencapsulation procedure, J Control Release,156 (2011) 92-100.[62] L. Guo, T.E. Salt, A. Maass, V. Luong, S.E. Moss, F.W. Fitzke, M.F. Cordeiro, Assessment ofneuroprotective effects of glutamate modulation on glaucoma-related retinal ganglion cellapoptosis in vivo, Invest Ophthalmol Vis Sci, 47 (2006) 626-633.[63] R.L. Gross, S.H. Hensley, F. Gao, S.M. Wu, Retinal ganglion cell dysfunction induced byhypoxia and glutamate: potential neuroprotective effects of beta-blockers, Surv Ophthalmol,43 Suppl 1 (1999) S162-170.[64] X. Luo, V. Heidinger, S. Picaud, G. Lambrou, H. Dreyfus, J. Sahel, D. Hicks, Selectiveexcitotoxic degeneration of adult pig retinal ganglion cells in vitro, Invest Ophthalmol Vis Sci,42 (2001) 1096-1106.[65] J.K. Sandhu, S. Pandey, M. Ribecco-Lutkiewicz, R. Monette, H. Borowy-Borowski, P.R.Walker, M. Sikorska, Molecular mechanisms of glutamate neurotoxicity in mixed cultures ofNT2-derived neurons and astrocytes: protective effects of coenzyme Q10, J Neurosci Res, 72(2003) 691-703.[66] S. Vishnoi, S. Raisuddin, S. Parvez, Glutamate Excitotoxicity and Oxidative Stress inEpilepsy: Modulatory Role of Melatonin, J Environ Pathol Toxicol Oncol, 35 (2016) 365-374.[67] L. Papucci, N. Schiavone, E. Witort, M. Donnini, A. Lapucci, A. Tempestini, L. Formigli, S.Zecchi-Orlandini, G. Orlandini, G. Carella, R. Brancato, S. Capaccioli, Coenzyme q10 preventsapoptosis by inhibiting mitochondrial depolarization independently of its free radicalscavenging property, J Biol Chem, 278 (2003) 28220-28228.[68] D. Lee, M.S. Shim, K.Y. Kim, Y.H. Noh, H. Kim, S.Y. Kim, R.N. Weinreb, W.K. Ju, CoenzymeQ10 inhibits glutamate excitotoxicity and oxidative stress-mediated mitochondrial alteration ina mouse model of glaucoma, Invest Ophthalmol Vis Sci, 55 (2014) 993-1005.[69] R.J. Reiter, D.X. Tan, J.C. Mayo, R.M. Sainz, J. Leon, Z. Czarnocki, Melatonin as anantioxidant: biochemical mechanisms and pathophysiological implications in humans, ActaBiochim Pol, 50 (2003) 1129-1146.[70] R.J. Reiter, D.X. Tan, C. Osuna, E. Gitto, Actions of melatonin in the reduction of oxidativestress. A review, J Biomed Sci, 7 (2000) 444-458.[71] I. Antolin, B. Obst, S. Burkhardt, R. Hardeland, Antioxidative protection in a high-melatoninorganism: the dinoflagellate Gonyaulax polyedra is rescued from lethal oxidative stress bystrongly elevated, but physiologically possible concentrations of melatonin, J Pineal Res, 23(1997) 182-190.[72] Y. Urata, S. Honma, S. Goto, S. Todoroki, T. Iida, S. Cho, K. Honma, T. Kondo, Melatonininduces gamma-glutamylcysteine synthetase mediated by activator protein-1 in humanvascular endothelial cells, Free Radic Biol Med, 27 (1999) 838-847.[73] J.C. Mayo, R.M. Sainz, P. Gonzalez-Menendez, D. Hevia, R. Cernuda-Cernuda, Melatonintransport into mitochondria, Cell Mol Life Sci, 74 (2017) 3927-3940.[74] R.J. Reiter, S. Rosales-Corral, D.X. Tan, M.J. Jou, A. Galano, B. Xu, Melatonin as amitochondria-targeted antioxidant: one of evolution's best ideas, Cell Mol Life Sci, 74 (2017)3863-3881.[75] P. Patino, E. Parada, V. Farre-Alins, S. Molz, R. Cacabelos, J. Marco-Contelles, M.G. Lopez,C.I. Tasca, E. Ramos, A. Romero, J. Egea, Melatonin protects against oxygen and glucosedeprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampalslices, Neurotoxicology, 57 (2016) 61-68.[76] E. Sanchez-Lopez, M.A. Egea, B.M. Davis, L. Guo, M. Espina, A.M. Silva, A.C. Calpena,E.M.B. Souto, N. Ravindran, M. Ettcheto, A. Camins, M.L. Garcia, M.F. Cordeiro, Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma, Small, 14(2018).[77] A. Dibas, M.H. Yang, S. He, J. Bobich, T. Yorio, Changes in ocular aquaporin-4 (AQP4)expression following retinal injury, Mol Vis, 14 (2008) 1770-1783.[78] M. Liu, L. Guo, T.E. Salt, M.F. Cordeiro, Dendritic changes in rat visual pathway associatedwith experimental ocular hypertension, Curr Eye Res, 39 (2014) 953-963.[79] M.S. Ward, A. Khoobehi, E.B. Lavik, R. Langer, M.J. Young, Neuroprotection of retinalganglion cells in DBA/2J mice with GDNF-loaded biodegradable microspheres, J Pharm Sci, 96(2007) 558-568.[80] C. Jiang, M.J. Moore, X. Zhang, H. Klassen, R. Langer, M. Young, Intravitreal injections ofGDNF-loaded biodegradable microspheres are neuroprotective in a rat model of glaucoma,Mol Vis, 13 (2007) 1783-1792.[81] C. Andrieu-Soler, A. Aubert-Pouessel, M. Doat, S. Picaud, M. Halhal, M. Simonutti, M.C.Venier-Julienne, J.P. Benoit, F. Behar-Cohen, Intravitreous injection of PLGA microspheresencapsulating GDNF promotes the survival of photoreceptors in the rd1/rd1 mouse, Mol Vis,11 (2005) 1002-1011.[82] P.D. Drew, J.A. Chavis, Inhibition of microglial cell activation by cortisol, Brain Res Bull, 52(2000) 391-396.[83] L. Vardimon, I. Ben-Dror, N. Avisar, A. Oren, L. Shiftan, Glucocorticoid control of glial geneexpression, J Neurobiol, 40 (1999) 513-527.[84] I.P. Hargreaves, Coenzyme Q10 as a therapy for mitochondrial disease, Int J Biochem CellBiol, 49 (2014) 105-111.[85] E. Kilic, D.M. Hermann, S. Isenmann, M. Bahr, Effects of pinealectomy and melatonin onthe retrograde degeneration of retinal ganglion cells in a novel model of intraorbital opticnerve transection in mice, J Pineal Res, 32 (2002) 106-111.[86] C. Kaur, V. Sivakumar, R. Robinson, W.S. Foulds, C.D. Luu, E.A. Ling, Neuroprotective effectof melatonin against hypoxia-induced retinal ganglion cell death in neonatal rats, J Pineal Res,54 (2013) 190-206.[87] G. Tezel, The immune response in glaucoma: a perspective on the roles of oxidative stress,Exp Eye Res, 93 (2011) 178-186.[88] C. Nucci, R. Tartaglione, A. Cerulli, R. Mancino, A. Spano, F. Cavaliere, L. Rombola, G.Bagetta, M.T. Corasaniti, L.A. Morrone, Retinal damage caused by high intraocular pressureinducedtransient ischemia is prevented by coenzyme Q10 in rat, Int Rev Neurobiol, 82 (2007)397-406.[89] L. Jing, M.T. He, Y. Chang, S.L. Mehta, Q.P. He, J.Z. Zhang, P.A. Li, Coenzyme Q10 protectsastrocytes from ROS-induced damage through inhibition of mitochondria-mediated cell deathpathway, Int J Biol Sci, 11 (2015) 59-66.[90] M. Bhardwaj, A. Kumar, Neuroprotective mechanism of Coenzyme Q10 (CoQ10) againstPTZ induced kindling and associated cognitive dysfunction: Possible role of microglia inhibition,Pharmacol Rep, 68 (2016) 1301-1311.[91] G. Hollo, J. Vuorinen, J. Tuominen, T. Huttunen, A. Ropo, N. Pfeiffer, Fixed-dosecombination of tafluprost and timolol in the treatment of open-angle glaucoma and ocularhypertension: comparison with other fixed-combination products, Adv Ther, 31 (2014) 932-944.[92] G. Hollo, F. Topouzis, R.D. Fechtner, Fixed-combination intraocular pressure-loweringtherapy for glaucoma and ocular hypertension: advantages in clinical practice, Expert OpinPharmacother, 15 (2014) 1737-1747.[93] S. Guven Yilmaz, C. Degirmenci, Y.E. Karakoyun, E. Yusifov, H. Ates, The efficacy and safetyof bimatoprost/timolol maleate, latanoprost/timolol maleate, and travoprost/timolol maleatefixed combinations on 24-h IOP, Int Ophthalmol, 38 (2018) 1425-1431.[94] M. Aihara, M. Adachi, H. Matsuo, T. Togano, T. Fukuchi, N. Sasaki, J.A.C.S. groupdagger,Additive effects and safety of fixed combination therapy with 1% brinzolamide and 0.5%timolol versus 1% dorzolamide and 0.5% timolol in prostaglandin-treated glaucoma patients,Acta Ophthalmol, 95 (2017) e720-e726.[95] J. Rodriguez Villanueva, I. Bravo-Osuna, R. Herrero-Vanrell, I.T. Molina Martinez, M.Guzman Navarro, Optimising the controlled release of dexamethasone from a new generationof PLGA-based microspheres intended for intravitreal administration, Eur J Pharm Sci, 92(2016) 287-297.[96] L.G. Martins, N.M. Khalil, R.M. Mainardes, Plga Nanoparticles and Polysorbate -80-CoatedPlga Nanoparticles Increase in the Vitro Antioxiant Activity of Melatonin, Curr Drug Deliv,(2017).[97] S. Kumar, R. Rao, A. Kumar, S. Mahant, S. Nanda, Novel Carriers for Coenzyme Q10Delivery, Curr Drug Deliv, 13 (2016) 1184-1204. NO Ministerio de Economía y Competitividad (MINECO) NO Instituto de Salud Carlos III/FEDER NO Universidad Complutense de Madrid DS Docta Complutense RD 2 may 2024