RT Journal Article T1 Indium Zinc Oxide pyramids with pinholes and nanopipes A1 Bartolomé Vílchez, Javier A1 Maestre Varea, David A1 Amati, Mateo A1 Cremades Rodríguez, Ana Isabel A1 Piqueras De Noriega, Francisco Javier AB Micropyramids of zinc-doped indium oxide have been grown by thermal treatments of compacted InN and ZnO powders at temperatures between 700:and 900 degrees C Under argon flow. X-ray diffraction (XRD) measurements and energy-dispersive X-ray (EDS) mappings as well as local EDS spectra enable the identification of rough surfaces of the pyramids with the nucleation of a shell of nanocrystallites with high Zn/In ratio because of the formation of Zn(k)In(2)O(k+3). Some of the pyramids have a truncated tip with pinholes with regular crystalline facets. The apexes of these pinhole's present a hollow core or nanopipe The possible relation of the nanopipes with a dislocation driven growth is discussed. A growth model is proposed from the morphology evolution of the pyramids during the formation of the In(2)O(3)-ZnO (IZO) compound X-ray photoelectron spectroscopy and microscopy (XPS-ESCA) Measurements are used to discuss the Zn incorporation as a dopant and the formation of Zn(k)In(2)O(k+3) ternaries. Cathodoluminescence (CL) in the scanning electron microscopy (SEM) shows a dependence of the luminescence of the microstructures on the Zn concentration and the growth temperature. PB amer Chemical Soc SN 1932-7447 YR 2011 FD 2011-04-28 LK https://hdl.handle.net/20.500.14352/43987 UL https://hdl.handle.net/20.500.14352/43987 LA eng NO (1) Magdas, D. A.; Cremades, A; Piqueras, J. Appl. Phys. Lett. 2006, 88, 113107.(2) Law, M.; Sirbuly, D. J.; Johnson, J. C.; Goldberger, J.; Saykally, R. J.; Yang, P. Science 2004, 305, 1269–1273.(3) Maestre, D.; Cremades, A.; Gregoratti, L.; Piqueras, J. J. Nanosci. Nanotechnol. 2008, 8, 6533–6537.(4) Maestre, D.; Cremades, A.; Piqueras, J. J. Appl. Phys. 2005, 97, 044316.(5) Hao, Y.; Meng, G.; Ye, Ch.; Zhang, L. Cryst. Growth Des. 2005, 5, 1617–1621.(6) Masuda, Y.; Kinoshita, N.; Sato, F.; Koumoto, K. Cryst. Growth Des. 2006, 6, 75–78.(7) Ramamoorthy, K.; Kumar, K.; Chandramohan, R.; Sankaranarayanan, K. Mater. Sci. Eng., B 2006, 126, 1–15.(8) Ito, N.; Sato, Y.; Song, P. K.; Kaijio, A.; Inoue, K.; Shigesato, Y. Thin Solid Films 2006, 496, 99–103.(9) Lee, W. J.; Fang, Y. K.; Ho, J. J.; Chen, C. Y.; Chiou, L. H.; Wang, S. J.; Dai, F.; Hsieh, T.; Tsai, R. Y.; Huang, D.; Ho, F. C. Solid-State Electron. 2002, 46, 477–480.(10) Hu, G.; Kumar, B.; Gong, H.; Chor, E. F.; Wu, P. Appl. Phys. Lett. 2006, 88, 101901.(11) Makise, K.; Kokubo, N.; Takada, S.; Yamaguti, T.; Ogura, S.; Yamada, K.; Shinozaki, B.; Yano, K.; Inoue, K.; Nakamura, H. Sci. Technol. Adv. Mater. 2008, 9, 044208.(12) Heindl, J.; Strunk, H. P. Phys. Status Solidi B 1996, 193, K1–K3.(13) Hawkridge, M. E.; Cherns, D. Appl. Phys. Lett. 2005, 87, 221903.(14) Qian, W.; Rohrer, G. S.; Skowronski, M.; Doverspike, K.; Rowland, L. B.; Gaskill, D. K. Appl. Phys. Lett. 1995, 67, 2284.(15) Herrera, M.; Cremades, A.; Piqueras, J.; Stutzmann, M.; Ambacher, O. J. Appl. Phys. 2004, 95, 5305–5310.(16) Cho, H. K.; Lee, J. Y.; Yang, G. M.; Kim, C. S. Appl. Phys. Lett. 2001, 79, 215–217.(17) Herrera, M.; Cremades, A.; Stutzmann, M.; Piqueras, J. Superlattices Microstruct. 2009, 45, 435–443.(18) Frank, F. C. Acta Crystallogr. 1951, 4, 497–501.(19) Maestre, D.; Cremades, A.; Piqueras, J.; Gregoratti, L. J. Appl. Phys. 2008, 103, 093531.(20) Maestre, D.; Cremades, A.; Gregoratti, L.; Piqueras, J. J. Phys. Chem. C 2010, 114, 3411–3415.(21) Lim, S. K.; Tambe, M. J.; Brewster, M. M.; Grade cak, S. Nano Lett. 2008, 8, 1386–1392.(22) Farvid, S. S.; Dave, N.; Wang, T.; Radovanovic, P. V. J. Phys. Chem. C 2009, 113, 15928–15933.(23) Alem an, B.; Fern andez, P.; Piqueras, J. Appl. Phys. Lett. 2009, 95, 013111.(24) Hiramatsu, H.; Seo, W. S.; Koumoto, K. Chem. Mater. 1998, 10, 3033–3039.(25) Yan, Y.; Da Silva, J. L. F.; Wei, S. H.; Al-Jassim, M. Appl. Phys. Lett. 2007, 90, 261904.(26) Fan, J. C. C.; Goodenough, J. B. J. Appl. Phys. 1977, 48, 3524.(27) Kumar, B.; Gong, H.; Akkipeddi, R. J. Appl. Phys. 2005, 97, 063706.(28) Maestre, D.; Martínez de Velasco, I.; Cremades, A.; Amati, M.; Piqueras, J. J. Phys. Chem. C 2010, 114, 11748–11752.(29) Wang, R. X.; Beling, C. D.; Fung, S.; Djuri si c, A. B.; Ling, C. C.; Li, S. J. Appl. Phys. 2005, 97, 033504.(30) Lim, W. T.; Norton, D. P.; Jang, J. H.; Craciun, V.; Pearton, S. J.; Ren, F. Appl. Phys. Lett. 2008, 92, 122102.(31) Zhang, W. F.; He, Z. B.; Yuan, G. D.; Jie, J. S.; Luo, L. B.; Zhang, X. J.; Chen, Z. H.; Lee, C. S.; Zhang, W. J.; Lee, S. T. Appl. Phys. Lett. 2009, 94, 123103.(32) Yamamoto, T.; Katayama-Yoshida, H. J. Cryst. Growth 2000, 214, 552–555.(33) Walsh, A.; Da Silva, J. L. F.; Yan, Y.; Al-Jassim, M.; Wei, S. H. Phys. Rev. B 2009, 79, 073105.(34) Jia, H.; Zhang, Y.; Chen, X.; Shu, J.; Luo, X.; Zhang, Z.; Yu, D. Appl. Phys. Lett. 2003, 82, 4146–4148.(35) Magdas, D. A.; Cremades, A.; Piqueras, J. J. Appl. Phys. 2006, 100, 094320.(36) Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153–1175.(37) Yan, Y. G.; Zhang, Y.; Zeng, H. B.; Zhang, L. D. Cryst. Growth Des. 2007, 7, 940–943.(38) Sears, G. W. J. Chem. Phys. 1956, 25, 637–642.(39) Bierman, M. J.; Lau, Y. K. A.; Kvit, A. V.; Schmitt, A. L.; Jin, S. Science 2008, 320, 1060–1063.(40) Lee, M. S.; Choi, W. C.; Kim, E. K.; Kim, C. K.; Min, S. K. Thin Solid Films 1996, 279, 1–3.(41) Mazzera, M.; Zha, M.; Calestani, D.; Zappettini, A.; Lazzarini, L.; Salviati, G.; Zanotti, L. Nanotechnology 2007, 18, 355707.(42) Lany, S.; Zunger, A. Phys. Rev. Lett. 2007, 98, 045501.(43) Dai, L.; Chen, X. L.; Jian, J. K.; He, M.; Zhou, T.; Hu, B. Q. Appl. Phys. A: Mater. Sci. Process. 2002, 75, 687–689.(44) Zeng, F.; Zhang, X.; Wang, J.; Wang, L.; Zhang, L. Nanotechnology 2004, 15, 596–600.(45) Cao, H.; Qiu, X.; Liang, Y.; Zhu, Q. Appl. Phys. Lett. 2003, 83, 761–763.(46) Zheng, M. J.; Zhang, L. D.; Li, G. H.; Zhang, X. Y.; Wang, X. F. Appl. Phys. Lett. 2001, 79, 839–841.(47) Weiher, L. R.; Rinaldi, R. J. Appl. Phys. 1966, 37, 299.(48) King, P. D. C.; Veal, T. D.; Fuchs, F.; Wang, Ch. Y.; Payne, D. J.; Bourlange, A.; Zhang, H.; Bell, G. R.; Cimalla, V.; Ambacher, O.; Egdell, R. G.; Bechstedt, F.; McConville, C. F. Phys. Rev. B 2009, 79, 205211.(49) Walsh, A.; Da Silva, J. L. F.; Wei, S. H.; K€orber, C.; Klein, A.; Piper, L. F. J.; DeMasi, A.; Smith, K. E.; Panaccione, G.; Torelli, P.; Payne, D. J.; Bourlange, A.; Egdell, R. G. Phys. Rev. Lett. 2008, 100, 167402.(50) Khomenkova, L.; Fern andez, P.; Piqueras, J. Cryst. Growth Des. 2007, 7, 836–839.(51) Grym, J.; Fern andez, P.; Piqueras, J. Nanotechnology 2005, 16, 931–935. NO ©2011 American Chemical Society.This work was supported by MCINN (MAT2009-07882, CSD2009-00013) and UCM-BSCH (GR58-08). NO MCINN NO UCM-BSCH DS Docta Complutense RD 28 sept 2024