RT Journal Article T1 Localization-delocalization transition in a system of quantum kicked rotors A1 Creffield, Charles E. A1 Hur, G. A1 Monteiro, T. S. AB The quantum dynamics of atoms subjected to pairs of closely spaced delta kicks from optical potentials are shown to be quite different from the well-known paradigm of quantum chaos, the single delta-kick system. We find the unitary matrix has a new oscillating band structure corresponding to a cellular structure of phase space and observe a spectral signature of a localization-delocalization transition from one cell to several. We find that the eigenstates have localization lengths which scale with a fractional power L similar to h(-0.75) and obtain a regime of near-linear spectral variances which approximate the "critical statistics" relation Sigma(2)(L)similar or equal to chi L approximate to 1/2(1-nu)L, where nu approximate to 0.75 is related to the fractal classical phase-space structure. The origin of the nu approximate to 0.75 exponent is analyzed. PB American Physical Society SN 0031-9007 YR 2006 FD 2006-01-20 LK https://hdl.handle.net/20.500.14352/51583 UL https://hdl.handle.net/20.500.14352/51583 LA eng NO [1] F. L. Moore, J. C. Robinson, C. F. Bharucha, B. Sundaram, and M. G. Raizen, Phys. Rev. Lett. 75, 4598 (1995). [2] G. Casati, B. V. Chirikov, F. M. Izraelev, and J. Ford, in Lecture Notes in Physics (Springer, Berlin, 1979), Vol. 93, p. 334; S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. Lett. 49, 509 (1982). [3] P. H. Jones, M. M. Stocklin, G. Hur, and T. S. Monteiro, Phys. Rev. Lett. 93, 223002 (2004). [4] C. E. Creffield, S. Fishman, and T. S. Monteiro, physics/ 0510161. [5] S. Fishman, D. R. Grempel, and R. E. Prange, Phys. Rev. A 36, 289 (1987). [6] N. T. Maitra and E. J. Heller, Phys. Rev. E 61, 3620 (2000). [7] B. I. Shklovskii et al., Phys. Rev. B 47, 11 487 (1993). [8] J. T. Chalker, I. V. Lerner, and R. A. Smith, Phys. Rev. Lett. 77, 554 (1996); V. E. Kravtsov and K. A. Muttalib, Phys. Rev. Lett. 79, 1913 (1997); D. Braun, G. Montambaux, and M. Pascaud, Phys. Rev. Lett. 81, 1062 (1998); F. Evers and A. D. Mirlin, Phys. Rev. Lett. 84, 3690 (2000). [9] E. B. Bogomolny, U. Gerland, and C. Schmit, Phys. Rev. E 59, R1315 (1999); A. M. Garcia-Garcia and J. J. M. Verbaarschot, Phys. Rev. E 67, 046104 (2003); E. Bogomolny and C. Schmit, Phys. Rev. Lett. 92, 244102 (2004); A. M. Garcia-Garcia and J. Wang, Phys. Rev. Lett. 94, 244102 (2005). [10] R. Ketzmerick, G. Petschel, and T. Geisel, Phys. Rev. Lett. 69, 695 (1992). [11] M. Feingold et al., Phys. Rev. B 31, R6852 (1985); F. M. Izraelev, Phys. Rep. 196, 299 (1990). [12] M. Stocklin, Ph.D. thesis, University College London (to be published). [13] E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, England, 1993). [14] K. Vant, G. Ball, H. Ammann, and N. Christensen, Phys. Rev. E 59, 2846 (1999). [15] T. Geisel, G. Radons, and J. Rubner, Phys. Rev. Lett. 57, 2883 (1986). [16] C. Mejia-Monasterio, G. Benenti, G. G. Carlo, and G. Casati, Phys. Rev. A 71, 062324 (2005). [17] O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223, 43 (1993). NO ©2006 The American Physical Society.This work was supported by the EPSRC. We thank Shmuel Fishman and Antonio Garcia-Garcia for helpful comments and advice. NO EPSRC (UK) DS Docta Complutense RD 2 may 2024