%0 Journal Article %A Ruiz Pérez, Javier %T The heat flow during the formation of ribbon terrains on Venus %D 2007 %@ ISSN: 0032-0633 %U https://hdl.handle.net/20.500.14352/49339 %X Ribbons are regularly spaced, between 2 and 6 km, troughs that exist on venusian tesserae, which are mainly located in, andcharacterize to, venusian crustal plateaus. Independent of the geological or temporal relations with other features, regularly and similarlyspaced ribbons on several tesserae strongly suggest a thermal control on the thickness of the deformed layer. This can be used toconstraint the heat flow at the time of ribbon formation, which holds important implications for the viability of the hypotheses thataddress the origin and evolution of crustal plateaus. For a brittle–ductile transition 1–3km deep (as proposed from ribbon spacing),realistic strain rates, and a present-day surface temperature of 740 K, the implied heat flow is very high, 130–780mWm2. If Venus hasexperienced higher surface temperatures due to climate forcing by massive volcanism, then the heat flow could be greatly reduced. Forsurface temperatures of 850–900K the heat flow is 190–560, 60–230 and 20–130mWm2 for brittle–ductile transition depths of 1, 2 and3 km, respectively. Heat flow values around 80–100mWm2 are reasonable for venusian hotspots, based on terrestrial analogs, buthardly consistent with coldspot settings. High surface temperatures are also required to maintain the crustal solidus deeper than a fewkilometers during the formation of ribbon terrains. For the obtained heat flows, a solidus deeper than 30km (the likely mean value forthe crustal thickness) is difficult to achieve. This suggests that a substantial proportion of the crust beneath crustal plateaus was emplacedsubsequently to the time when ribbon terrains were formed. Alternatively, at that time a magma reservoir inside the crust could haveexisted. %~