RT Journal Article T1 Ant colony optimization for multi-UAV minimum time search in uncertain domains A1 Perez-Carabaza, Sara A1 Besada Portas, Eva A1 López Orozco, José Antonio A1 Cruz García, Jesús Manuel De La AB This paper presents a new approach based on ant colony optimization (ACO) to determine the trajectories of a fleet of unmanned air vehicles (UAVs) looking for a lost target in the minimum possible time. ACO is especially suitable for the complexity and probabilistic nature of the minimum time search (MTS) problem, where a balance between the computational requirements and the quality of solutions is needed. The presented approach includes a new MTS heuristic that exploits the probability and spatial properties of the problem, allowing our ant based algorithm to quickly obtain high-quality high-level straight segmented UAV trajectories. The potential of the algorithm is tested for different ACO parameterizations, over several search scenarios with different characteristics such as number of UAVs, or target dynamicsand location distributions. The statistical comparison against other techniques previously used for MTS( ad hoc heuristics, cross entropy optimization, bayesian optimization algorithm and genetic algorithms) shows that the new approach outperforms the others. (C) 2017 Elsevier B.V. All rights reserved. PB Elsevier SN 1568-4946 YR 2017 FD 2017 LK https://hdl.handle.net/20.500.14352/94255 UL https://hdl.handle.net/20.500.14352/94255 LA eng NO Sara Perez-Carabaza, Eva Besada-Portas, Jose A. Lopez-Orozco, Jesus M. de la Cruz, Ant colony optimization for multi-UAV minimum time search in uncertain domains, Applied Soft Computing, Volume 62, 2018, Pages 789-806, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2017.09.009. NO El texto completo de este trabajo no se encuentra disponible por no haber sido facilitado aún por su autor, por restricciones de copyright, o por no existir una versión digital. NO AIRBUS DS Docta Complutense RD 15 ago 2025