RT Journal Article T1 S-Nitrosylation of Ras Mediates Nitric Oxide-Dependent Post-Injury Neurogenesis in a Seizure Model A1 Santos, Ana Isabel A1 Pereira Carreira, Bruno A1 Izquierdo-Álvarez, Alicia A1 Ramos, Elena A1 Lourenço, Ana Sofia A1 Santos, Daniela Filipa A1 Morte, Maria Inês A1 Ribeiro, Luís Filipe A1 Marreiros, Ana A1 Sánchez-López, Nuria A1 Marina, Anabel A1 Monteiro Carvalho, Caetana A1 Martínez Ruiz, Antonio A1 Araújo, Inês Maria AB Aims: Nitric oxide (NO) is involved in the upregulation of endogenous neurogenesis in the subventricular zone and in the hippocampus after injury. One of the main neurogenic pathways activated by NO is the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway, downstream of the epidermal growth factor receptor. However, the mechanism by which NO stimulates cell proliferation through activation of the ERK/MAPK pathway remains unknown, although p21Ras seems to be one of the earliest targets of NO. Here, we aimed at studying the possible neurogenic action of NO by posttranslational modification of p21Ras as a relevant target for early neurogenic events promoted by NO in neural stem cells (NSCs). Results: We show that NO caused S-nitrosylation (SNO) of p21Ras in Cys118, which triggered downstream activation of the ERK/MAPK pathway and proliferation of NSC. Moreover, in cells overexpressing a mutant Ras in which Cys118 was replaced by a serine–C118S–, cells were insensitive to NO, and no increase in SNO, in ERK phosphorylation, or in cell proliferation was observed. We also show that, after seizures, in the presenceof NO derived from inducible nitric oxide synthase, there was an increase in p21Ras cysteine modification that was concomitant with the previously described stimulation of proliferation in the dentate gyrus.Innovation: Our work identifies p21Ras and its SNO as an early target of NO during signaling events that lead to NSC proliferation and neurogenesis.Conclusion: Our data highlight Ras SNO as an early event leading to NSC proliferation, and they may providea target for NO-induced stimulation of neurogenesis with implications for brain repair SN 1523-0864 SN 1557-7716 YR 2018 FD 2018-01 LK https://hdl.handle.net/20.500.14352/102924 UL https://hdl.handle.net/20.500.14352/102924 LA eng NO Foundation for Science and Technology NO ISCIII, Spanish Government, partially funded by FEDER/ EDRF DS Docta Complutense RD 2 sept 2024